The **gamma signal** events: Gamma/Hadron separation et al..

Villi Scalzotto – MAGIC outreach summer school - 2009

Resume

- + So: you realized you were not able to select your gammas directly by your eyes.
- + Why??
- + If we want to ask the help of your pc, we need to define properly what's the definition of a general object, you need to recognize with respect to some other.

Definition of "anything"...

+ In geometry, for example, it is clear and exhaustive:

How do you recognize a bird??

Let's discuss together!

Let's search for a variable defining it...

it flies

We need to find a best variable, Let's call it 'birdness'! ???? HOW ????

a pecker

2 wings

The idea

- + We don't want a high precision, since the real life is not precise! ;-) Otherwise we will find only "ideal" birds!
- + We use the possibility to GUESS, instead of answering a question only when you are 100% sure... like at school!!!
- + BUT you need a (very long) training/experience!!!

The idea \rightarrow How?

- + We create an algorithm
- + Let's allow the pc "to be wrong!"

- + We realize a training session, where the pc "learn" to recognize. Each time we say it: "Good!" ..if it's ok, or "Bad!" ..in case it's wrong.
- + We need a lot of CPU power, and of time. But mostly during the training!!!
- + Some other techniques uses the same principle (neural nets, likelihood)

"Apple/Pear separation"

Gamma/hadron separation

At low energy, harder and harder...!

Applications

Not only mimicry...

Random forest: the Hadronness

- No parametrization
- Use of "decision trees", built by training samples of events of known kind
- Combination of parameters and their correlations can be taken into account
- It tags each event with a "hadronicity coefficient", spanning from 0 (gamma-like event) to 1 (hadron-like event)

Gamma event selection is based on the use of Random Forest (RF) classification method by

the information lead from image parameters

Random forest: the Hadronness

Remember: the system is not perfect!

- + Improvements in the analysis
- + Often this means more cpu power and more statistic (that is ... more and more "books" to be studied by your pc!)
- + Our brain is still more clever than software

example of a captcha used in the web against hacking

+ ...but drastically slower!

Random forest: Hadronness

To measure the gamma/hadron separation, a scalar value is defined:

$$Q = rac{\epsilon_{\gamma}}{\sqrt{\epsilon_{h}}} \ \epsilon_{\gamma,h} = rac{\#_{\gamma,h} ext{ after cuts}}{\#_{\gamma,h} ext{ before cuts}}$$

The higher the Q factor, the better the gamma/hadron separation

End of the γ/h-sep session

BTW: how much difficult do you think it would be to separate these two kinds of fruit?

Observations and signal detection

For each source, two kind of observation:

- ON: data taking pointing toward the source
- OFF: data taking in a portion of the sky with similar conditions, but with no gamma source

Alpha distribution for On and Off used to detect the signal

Detection defined as a signal found with significance (Li&Ma formula) equal to 5

On/Off normalization by the tail of Alpha distribution

Crab: the standard candle

Strong steady source of GeV/TeV gamma rays (Whipple '89)

August 9, 2009

Source Position reconstruction

(DISP method)

Angular Resolution: 0.1°

$$Disp = A(Size) + B(Size) \frac{Width}{Length + \eta(Size) \cdot Leakage}$$

Theta: (Estimated SrcPos - Nominal SrcPos)

Head-tail discrimination

Differences in image shape: I asymmetry

Head Tail asymmetry h
disentangle
the degeneration in the soullead by DISP met
(2 possible solutions)

This degeneracy could be broken thanks to a second telescope...

August 9, 2009

Working in stereo mode

What does the stereoscopy change?

Higher resolution → Structures of gamma sources will become visible!

like RX J1713.7-3946 (Gamma image by HESS)

Galactic Plane Survey by HESS Many new galactic sources !!!

The stereo system

Just to give you an idea of what the stereo system

would change...

This could be the difference....

(see next slide with 1 eye or 2 eyes properly combining the information coming by each single eye....;-))

