
Vincenzo Innocente
CERN

CMS Experiment

ESC, Bertinoro, October 2018

Computing Architecture and its
Impact on Scientific Applications

Why are we Here?

10/18/18 VI Architecture@ESC 2

10/18/18 VI Architecture@ESC 3

Moore’s Law

• A marching order established ~50 years ago
• “Let’s continue to double the number of

transistors every other year!”
• First published as:

• Moore, G.E.: Cramming more components
onto integrated circuits. Electronics, 38(8),
April 1965.

• Accepted by all partners:
• Semiconductor manufacturers
• Hardware integrators
• Software companies
• Us, the consumers

10/18/18 VI Architecture@ESC 4

Dennard scaling law
(downscaling)

L’ = L / 2
V’ = V / 2
F’ = F * 2
D’ = 1 / L2 = 4D
P’ = P

do not hold anymore!

The power crisis!

L’ = L / 2
V’ = ~V
F’ = ~F * 2
D’ = 1 / L2 = 4 * D
P’ = 4 * P

Increase the number of cores
to maintain the
architectures evolution
on the Moore’s law

Programming crisis!

The core frequency
and performance do not
grow following the
Moore’s law any longer

new VLSI gen.

old VLSI gen.

Credit: Carlo Cavazzoni, CINECA10/18/18 VI Architecture@ESC 5

Consequences

10/18/18 VI Architecture@ESC 6

• The 7 “fat” years of
frequency scaling:
• The Pentium Pro in

1996: 150 MHz (12W)
• The Pentium 4 in 2003:

3.8 GHz (~25x) (115W)

• Since then
• Core 2 systems:

• ~3 GHz
• Multi-core

• Recent CERN purchase:
• Intel Xeon E5-2630 v3

• “only” 2.40 GHz (85W)
• 8 core

Memory Latency

VI Architecture@ESC 710/18/18

Simple, but illustrative example
• Intel KNL has ~64 cores @1.30GHz, 2FMA port

(VPU) each, 4-way hardware threading, hardware
vectors of size 8 (Double Precision), 16GB of fast
memory:

• 3TFLOPS DP for 400GB/s = 0.5bit/flop-sp
• 60 fp-ops = 1 fp-load

VI Architecture@ESC 810/18/18

Streaming Multiprocessor Architecture

NVIDIA Pascal
32 CUDA core
x4 x5 x4 = 2560
Floating Point Units
@1.7GHz
8GB fast memory

credit AnandTech

Require 110 fp-ops
to hide
one memory access!

VI Architecture@ESC 910/18/18

Do More with Less

• Improving throughput and/or latency requires exploiting optimal
massive parallelization at all levels
• Speeding up algorithms will not pay up if memory access is not

reduced

VI Architecture@ESC 1010/18/18

Computing Architecture

10/18/18 VI Architecture@ESC 11

Von Neumann architecture
• From Wikipedia:

• The von Neumann architecture
is a computer design model
that uses a processing unit and
a single separate storage
structure to hold both
instructions and data.

• It can be viewed as an entity
into which one streams
instructions and data in order
to produce results

DataInstructions

Results

Algorithms and Data Structures

Input

Processing

10/18/18 VI Architecture@ESC 12

Simple server diagram
• Multiple components which

interact during the execution
of a program:
• Processors/cores

• w/private caches
• I-cache, D-cache

• Shared caches
• Instructions and Data

• Memory controllers
• Memory (non-uniform)
• I/O subsystem

• Network attachment
• Disk subsystem

MemoryInterconnect

I/O bus

Shared
cache

C2 C3

C4 C5

Mem-ctl

Shared
cache

C0 C1

C4 C5

Mem-ctl

Memory

Socket 0 Socket 1

C0T0
C0T1C0 C1

C2 C3

Intel Nehalem10/18/18 VI Architecture@ESC 13

Single Core Architecture

10/18/18 VI Architecture@ESC 14

Back End
Execution
Engine

10/18/18 VI Architecture@ESC 15

Architecture: front end
Feeds “decoded” instructions to the
scheduler

Affected by instruction non-locality
(iCache-miss, iTLB misses) and
misspredicted branches

Main metrics:
L1-icache-load-misses (icache.ifdata_stall)

Cycles where a code fetch is stalled due to L1
instruction cache miss.
branch-misses (br_misp_retired.all_branches)

This event counts all mispredicted branch
instructions retired.

10/18/18 VI Architecture@ESC 16

Architecture: Out of order scheduler

Main metric:
rs_events.empty_cycles

This event counts cycles during which the reservation station (RS) is empty
RS == Unified scheduler

10/18/18 VI Architecture@ESC 17

Out-of-order (OOO) scheduling

• Most modern processors use OOO scheduling

• This means that they will speculatively execute instructions ahead

of time (Xeon: inside a “window” of ~150 instructions)

• In certain cases the results of such executed instructions must be

discarded

• At the end, there is a difference between “executed instructions” and

“retired instructions”

• One typical reason for this is mispredicted branches

• Potential problem with OOO:

• A lot of extra energy is needed!

• Interestingly: ARM has two designs:

• A53 (low power, in-order), A57 (high power, OOO)

10/18/18 VI Architecture@ESC 18

Architecture: Backend

Computational engine

Affected by

• instruction dependency

• instruction parallelism

• pipelining

• Memory access

• Latency of “heavy instructions”

• div sqrt

• Vectorization

Main Metrics:

uops_executed.stall_cycles
This event counts cycles during which no uops were dispatched from the Reservation Station (RS)

uops_executed.thread

Number of uops to be executed each cycle.

cycle_activity.stalls_mem_any

Execution stalls while memory subsystem has an outstanding load.

arith.divider_active

Cycles when divide unit is busy executing divide or square root operations. Accounts for integer and floating-point operations.

10/18/18 VI Architecture@ESC 19

Real-life latencies
• Most integer/logic instructions have a one-cycle execution latency:

• For example (on an Intel Xeon processor)
• ADD, AND, SHL (shift left), ROR (rotate right)

• Amongst the exceptions:
• IMUL (integer multiply): 3
• IDIV (integer divide): 13 – 23

• Floating-point latencies are typically multi-cycle
• FADD (3), FMUL (5)

• Same for both x87 and SIMD double-precision variants

• Exception: FABS (absolute value): 1
• Many-cycle, no pipepine : FDIV (20), FSQRT (27)
• Other math functions: even more

Latencies in the Core micro-architecture (Intel Manual
No. 248966-026 or later).
AMD processor latencies are similar.

http://www.agner.org/optimize/instruction_tables.pdf

As of Haswell:
FMA (5 cycles)
As of Skylake:
SIMD ADD, MUL,FMA: 4 cycles

10/18/18 VI Architecture@ESC 20

Instruction pipelining

• Instructions are broken up into stages.
• With a one-cycle execution latency (simplified):

• With a three-cycle execution latency:

I-fetch I-decode Execute Write-back

I-fetch I-decode Execute Write-back

I-fetch I-decode Execute Write-back

I-fetch I-decode Exec-1 Write-backExec-2 Exec-3

I-fetch I-decode Exec-1 Write-backExec-2 Exec-3

10/18/18 VI Architecture@ESC 21

Latencies and serial code (1)
• In serial programs, we typically pay the

penalty of a multi-cycle latency during
execution:
• In this example:

• Statement 2 cannot be started before
statement 1 has finished

• Statement 3 cannot be started before
statement 2 has finished

double a, b, c, d, e, f;

b = 2.0; c = 3.0; e = 4.0;

a = b * c; // Statement 1

d = a + e; // Statement 2

f = fabs(d); // Statement 3

I-F I-D EX-1 EX-2 EX-3 EX-4 EX-5 W-B

I-F I-D - - - - W-BEX-1 EX-2 EX-3

I-F I-D - - - - W-B- - EX-1

10/18/18 VI Architecture@ESC 22

Latencies and serial code (1)
• In serial programs, we typically pay

the penalty of a multi-cycle latency
during execution:
• In this example:

• Statement 2 cannot be started before
statement 1 has finished

• Statement 3 cannot be started before
statement 2 has finished

double a, b, c, d, e, f;

b = 2.0; c = 3.0; e = 4.0;

a = b * c; // Statement 1

f = b + e;
d = a + f; // Statement 2

f = fabs(d); // Statement 3

I-F I-D EX-1 EX-2 EX-3 EX-4 EX-5 W-B

I-F I-D - - - W-BEX-1 EX-2 EX-3

I-F I-D - - - W-B- - EX-1

I-F I-D W-BEX-1 EX-2 EX-3

10/18/18 VI Architecture@ESC 23

Latencies and serial code (2)

• Observations:
• Even if the processor can fetch and decode a new instruction every

cycle, it must wait for the previous result to be made available
• Fortunately, the result takes a ‘bypass’, so that the write-back stage does

not cause even further delays

• The result: CPI is equal to 3
• 9 execution cycles are needed for 3 instructions!

• A good way to hide latency is to [get the compiler to] unroll (vector)
loops !

I-F I-D EX-1 EX-2 EX-3 EX-4 EX-5 W-B

I-F I-D - - - - W-BEX-1 EX-2 EX-3

I-F I-D - - - - W-B- - EX-1

10/18/18 VI Architecture@ESC 24

Memory architecture

10/18/18 VI Architecture@ESC 25

Cache/Memory Hierarchy
• From CPU to main memory on

a recent Haswell processor

• With multicore, memory
bandwidth is shared
between cores in the same
processor (socket)

c = cycle

Processor Core

(Registers)

Local/remote memory

(large, but typically non-uniform)

R: 64B/1c

11c latency

~24 B/c for all cores

> 200c latency

(R:64B + W:32B)/1c

4c latency

Shared L3

(~20 MB)

32B/1c for all cores

> 21c latency

L2

(256 KB)

L1D

(32 KB)

L1I

(32 KB)

10/18/18 VI Architecture@ESC 26

Main metrics:

L1-dcache-loads, L1-dcache-load-misses

LLC-loads, LLC-load-misses (LastLevelCache)

mem_load_retired.l1_hit

mem_load_retired.l2_hit
mem_load_retired.l3_hit

mem_load_retired.l3_miss

offcore_requests.all_requests

offcore_requests_outstanding.demand_data_rd_ge_6

cycle_activity.stalls_mem_any

Latency Measurements (example)
• Memory Latency on Sandy Bridge-EP 2690 (dual socket)

• 90 ns (local) versus 150 ns (remote)

Interconnect

I/O bus

Shared
cache

C2 C3

C4 C5

Mem-ctl

Shared
cache

C0 C1

C4 C5

Mem-ctl

Memory

Socket 0 Socket 1

C0T0
C0T1C0 C1

C2 C3

10/18/18 VI Architecture@ESC 27

Recent architectures

Source AnandTech

10/18/18 VI Architecture@ESC 28

Cache lines (1)

• When a data element or an instruction is requested by
the processor, a cache line is ALWAYS moved (as the
minimum quantity), usually to Level-1

• A cache line is a contiguous section of memory, typically
64B in size (8 * double) and 64B aligned
• A 32KB Level-1 cache can hold 512 lines

• When cache lines have to be moved come from memory
• Latency is long (>200 cycles)

• It is even longer if the memory is remote

• Memory controller stays busy (~8 cycles)

10/18/18 VI Architecture@ESC 29

requested

Cache lines (2)
• Good utilisation is vital
• When only one element (4B or 8B) element is used inside the

cache line:
• A lot of bandwidth is wasted!

• Multidimensional C arrays should be accessed with the last index
changing fastest:

• Pointer chasing (in linked lists) can easily lead to “cache thrashing” (too
much memory traffic)

requested

for (i = 0; i < rows; ++i)
for (j = 0; j < columns; ++j)

mymatrix [i] [j] += increment;

10/18/18 VI Architecture@ESC 30

for (auto & a : v)
a.x += increment;

for (auto & a : v)
a->x += increment;

Cache lines (3)

• Prefetching:

• Fetch a cache line before it is requested

• Hiding latency

• Normally done by the hardware

• Especially if processor executes Out-of-order

• Also done by software instructions

• Especially when In-order (IA-64, Xeon Phi, etc.)

• Locality is vital:

• Spatial locality – Use all elements in the line

• Temporal locality – Complete the execution whilst the

elements are certain to be in the cache

Programming the memory hierarchy is an art in itself.

10/18/18 VI Architecture@ESC 31

Further reading:
• “Designing and Building Parallel Programs”, I. Foster, Addison-Wesley, 1995

• “Foundations of Multithreaded, Parallel and Distributed Programming”, G.R. Andrews,
Addison-Wesley, 1999

• “Computer Architecture: A Quantitative Approach”, J. Hennessy and D. Patterson, 3rd

ed., Morgan Kaufmann, 2002

• “Patterns for Parallel Programming”, T.G. Mattson, Addison Wesley, 2004

• “Principles of Concurrent and Distributed Programming”, M. Ben-Ari, 2nd edition,
Addison Wesley, 2006

• “The Software Vectorization Handbook”, A.J.C. Bik, Intel Press, 2006

• “The Software Optimization Cookbook”, R. Gerber, A.J.C. Bik, K.B. Smith and X. Tian;
Intel Press, 2nd edition, 2006

• “Intel Threading Building Blocks: Outfitting C++ for Multi-core Processor Parallelism”, J.
Reinders, O’Reilly, 1st edition, 2007

• “Inside the Machine”, J. Stokes, Ars Technica Library, 2007

10/18/18 VI Architecture@ESC 32

