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Why are we Here?
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Moore’s Law

• A marching order established ~50 years ago
• “Let’s continue to double the number of 

transistors every other year!”
• First published as:

• Moore, G.E.: Cramming more components 
onto integrated circuits. Electronics, 38(8), 
April 1965.

• Accepted by all partners:
• Semiconductor manufacturers
• Hardware integrators
• Software companies
• Us, the consumers
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Dennard scaling law
(downscaling)

L’ = L / 2
V’ = V / 2
F’ = F * 2
D’ = 1 / L2 = 4D
P’ = P

do not hold anymore!

The power crisis!

L’ = L / 2
V’ = ~V
F’ = ~F * 2
D’ = 1 / L2 = 4 * D
P’ = 4 * P

Increase the number of cores
to maintain the 
architectures evolution 
on the Moore’s law 

Programming crisis!

The core frequency
and performance do not
grow following the 
Moore’s law any longer 

new VLSI gen.

old VLSI gen.
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Consequences
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• The 7 “fat” years of 
frequency scaling:
• The Pentium Pro in 

1996: 150 MHz (12W)
• The Pentium 4 in 2003: 

3.8 GHz (~25x) (115W)

• Since then
• Core 2 systems:

• ~3 GHz
• Multi-core

• Recent CERN purchase:
• Intel Xeon E5-2630 v3

• “only” 2.40 GHz (85W)
• 8 core



Memory Latency
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Simple, but illustrative example
• Intel KNL has ~64 cores @1.30GHz, 2FMA port 

(VPU) each, 4-way hardware threading, hardware 
vectors of size 8 (Double Precision), 16GB of fast 
memory:

• 3TFLOPS DP for 400GB/s = 0.5bit/flop-sp
• 60 fp-ops = 1 fp-load
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Streaming Multiprocessor Architecture

NVIDIA  Pascal
32 CUDA core
x4 x5 x4 = 2560 
Floating Point Units 
@1.7GHz
8GB fast memory

credit AnandTech

Require 110 fp-ops
to hide 
one memory access!
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Do More with Less

• Improving throughput and/or latency requires exploiting optimal 
massive parallelization at all levels
• Speeding up algorithms will not pay up if memory access is not 

reduced 
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Computing Architecture
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Von Neumann architecture
• From Wikipedia:

• The von Neumann architecture 
is a computer design model 
that uses a processing unit and 
a single separate storage 
structure to hold both 
instructions and data.

• It can be viewed as an entity 
into which one streams 
instructions and data in order 
to produce results

DataInstructions

Results

Algorithms and Data Structures 

Input

Processing
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Simple server diagram
• Multiple components which 

interact during the execution 
of a program:
• Processors/cores

• w/private caches
• I-cache, D-cache

• Shared caches
• Instructions and Data

• Memory controllers
• Memory (non-uniform)
• I/O subsystem

• Network attachment
• Disk subsystem

MemoryInterconnect

I/O bus

Shared
cache

C2 C3

C4 C5

Mem-ctl

Shared
cache

C0 C1

C4 C5

Mem-ctl

Memory

Socket 0 Socket 1

C0T0
C0T1C0 C1

C2 C3

Intel Nehalem10/18/18 VI  Architecture@ESC 13



Single Core Architecture
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Back End
Execution 
Engine
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Architecture:  front end
Feeds “decoded” instructions to the 
scheduler

Affected by instruction non-locality 
(iCache-miss, iTLB misses) and 
misspredicted branches

Main metrics:
L1-icache-load-misses (icache.ifdata_stall )

Cycles where a code fetch is stalled due to L1 
instruction cache miss.
branch-misses (br_misp_retired.all_branches) 

This event counts all mispredicted branch 
instructions retired.
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Architecture: Out of order scheduler

Main metric:
rs_events.empty_cycles

This event counts cycles during which the reservation station (RS) is empty
RS == Unified scheduler

10/18/18 VI  Architecture@ESC 17



Out-of-order (OOO) scheduling

• Most modern processors use OOO scheduling

• This means that they will speculatively execute instructions ahead 

of time (Xeon: inside a “window” of ~150 instructions)

• In certain cases the results of such executed instructions must be 

discarded

• At the end, there is a difference between “executed instructions” and 

“retired instructions”

• One typical reason for this is mispredicted branches

• Potential problem with OOO:

• A lot of extra energy is needed!

• Interestingly: ARM has two designs:

• A53 (low power, in-order), A57 (high power, OOO)
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Architecture: Backend

Computational engine

Affected by 

• instruction dependency

• instruction parallelism

• pipelining

• Memory access

• Latency of “heavy instructions”

• div sqrt

• Vectorization

Main Metrics:

uops_executed.stall_cycles
This event counts cycles during which no uops were dispatched from the Reservation Station (RS) 

uops_executed.thread

Number of uops to be executed each cycle.

cycle_activity.stalls_mem_any

Execution stalls while memory subsystem has an outstanding load.

arith.divider_active 

Cycles when divide unit is busy executing divide or square root operations. Accounts for integer and floating-point operations.
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Real-life latencies
• Most integer/logic instructions have a one-cycle execution latency:

• For example (on an Intel Xeon processor) 
• ADD, AND, SHL (shift left), ROR (rotate right)

• Amongst the exceptions:
• IMUL (integer multiply): 3
• IDIV (integer divide): 13 – 23

• Floating-point latencies are typically multi-cycle
• FADD (3), FMUL (5)

• Same for both x87 and SIMD double-precision variants

• Exception: FABS (absolute value): 1
• Many-cycle, no pipepine : FDIV (20), FSQRT (27)
• Other math functions: even more 

Latencies in the Core micro-architecture (Intel Manual 
No. 248966-026 or later).
AMD processor latencies are similar.

http://www.agner.org/optimize/instruction_tables.pdf

As of Haswell:
FMA (5 cycles)
As of Skylake:
SIMD ADD, MUL,FMA: 4 cycles
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Instruction pipelining

• Instructions are broken up into stages.
• With a one-cycle execution latency (simplified):

• With a three-cycle execution latency:

I-fetch I-decode Execute Write-back

I-fetch I-decode Execute Write-back

I-fetch I-decode Execute Write-back

I-fetch I-decode Exec-1 Write-backExec-2 Exec-3

I-fetch I-decode Exec-1 Write-backExec-2 Exec-3
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Latencies and serial code (1)
• In serial programs, we typically pay the 

penalty of a multi-cycle latency during 
execution:
• In this example:

• Statement 2 cannot be started before 
statement 1 has finished

• Statement 3 cannot be started before 
statement 2 has finished 

double a, b, c, d, e, f;

b = 2.0; c = 3.0; e = 4.0;

a = b * c;  // Statement 1

d = a + e;  // Statement 2

f = fabs(d);   // Statement 3

I-F I-D EX-1 EX-2 EX-3 EX-4 EX-5 W-B

I-F I-D - - - - W-BEX-1 EX-2 EX-3

I-F I-D - - - - W-B- - EX-1
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Latencies and serial code (1)
• In serial programs, we typically pay 

the penalty of a multi-cycle latency 
during execution:
• In this example:

• Statement 2 cannot be started before 
statement 1 has finished

• Statement 3 cannot be started before 
statement 2 has finished 

double a, b, c, d, e, f;

b = 2.0; c = 3.0; e = 4.0;

a = b * c;  // Statement 1

f = b + e;
d = a + f;  // Statement 2

f = fabs(d);   // Statement 3

I-F I-D EX-1 EX-2 EX-3 EX-4 EX-5 W-B

I-F I-D - - - W-BEX-1 EX-2 EX-3

I-F I-D - - - W-B- - EX-1

I-F I-D W-BEX-1 EX-2 EX-3
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Latencies and serial code (2)

• Observations:
• Even if the processor can fetch and decode a new instruction every 

cycle, it must wait for the previous result to be made available
• Fortunately, the result takes a ‘bypass’, so that the write-back stage does 

not cause even further delays

• The result: CPI is equal to 3
• 9 execution cycles are needed for 3 instructions!

• A good way to hide latency is to [get the compiler to] unroll (vector) 
loops !

I-F I-D EX-1 EX-2 EX-3 EX-4 EX-5 W-B

I-F I-D - - - - W-BEX-1 EX-2 EX-3

I-F I-D - - - - W-B- - EX-1
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Memory architecture
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Cache/Memory Hierarchy
• From CPU to main memory on 

a recent Haswell processor

• With multicore, memory 
bandwidth is shared 
between cores in the same 
processor (socket)

c = cycle

Processor Core

(Registers)

Local/remote memory

(large, but typically non-uniform)

R: 64B/1c

11c latency

~24 B/c for all cores

> 200c latency

(R:64B + W:32B)/1c

4c latency

Shared L3

(~20 MB)

32B/1c for all cores

> 21c latency

L2

(256 KB)

L1D

(32 KB)

L1I

(32 KB)
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Main metrics:

L1-dcache-loads, L1-dcache-load-misses 

LLC-loads, LLC-load-misses (LastLevelCache)

mem_load_retired.l1_hit

mem_load_retired.l2_hit
mem_load_retired.l3_hit

mem_load_retired.l3_miss

offcore_requests.all_requests

offcore_requests_outstanding.demand_data_rd_ge_6

cycle_activity.stalls_mem_any



Latency Measurements (example)
• Memory Latency on Sandy Bridge-EP 2690 (dual socket)

• 90 ns (local) versus 150 ns (remote)

Interconnect

I/O bus

Shared
cache

C2 C3

C4 C5

Mem-ctl

Shared
cache

C0 C1

C4 C5

Mem-ctl

Memory

Socket 0 Socket 1

C0T0
C0T1C0 C1

C2 C3
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Recent architectures

Source AnandTech
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Cache lines (1)

• When a data element or an instruction is requested by 
the processor, a cache line is ALWAYS moved (as the 
minimum quantity), usually to Level-1

• A cache line is a contiguous section of memory, typically 
64B in size (8 * double) and 64B aligned
• A 32KB Level-1 cache can hold 512 lines

• When cache lines have to be moved come from memory
• Latency is long (>200 cycles)

• It is even longer if the memory is remote

• Memory controller stays busy (~8 cycles)
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requested



Cache lines (2)
• Good utilisation is vital
• When only one element (4B or 8B) element is used inside the 

cache line:
• A lot of bandwidth is wasted!

• Multidimensional C arrays should be accessed with the last index 
changing fastest:

• Pointer chasing (in linked lists) can easily lead to “cache thrashing” (too 
much memory traffic)

requested

for (i = 0; i < rows; ++i)
for (j = 0; j < columns; ++j) 

mymatrix [i] [j]   += increment;
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for (auto & a : v)
a.x += increment;

for (auto & a : v)
a->x += increment;



Cache lines (3)

• Prefetching:

• Fetch a cache line before it is requested

• Hiding latency

• Normally done by the hardware

• Especially if processor executes Out-of-order

• Also done by software instructions

• Especially when In-order (IA-64, Xeon Phi, etc.) 

• Locality is vital:

• Spatial locality – Use all elements in the line

• Temporal locality – Complete the execution whilst the 

elements are certain to be in the cache

Programming the memory hierarchy is an art in itself.
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Further reading:
• “Designing and Building Parallel Programs”, I. Foster, Addison-Wesley, 1995

• “Foundations of Multithreaded, Parallel and Distributed Programming”, G.R. Andrews, 
Addison-Wesley, 1999

• “Computer Architecture: A Quantitative Approach”, J. Hennessy and D. Patterson, 3rd

ed., Morgan Kaufmann, 2002

• “Patterns for Parallel Programming”, T.G. Mattson, Addison Wesley, 2004

• “Principles of Concurrent and Distributed Programming”, M. Ben-Ari, 2nd edition, 
Addison Wesley, 2006

• “The Software Vectorization Handbook”, A.J.C. Bik, Intel Press, 2006

• “The Software Optimization Cookbook”, R. Gerber, A.J.C. Bik, K.B. Smith and X. Tian; 
Intel Press, 2nd edition, 2006

• “Intel Threading Building Blocks: Outfitting C++ for Multi-core Processor Parallelism”, J. 
Reinders, O’Reilly, 1st edition, 2007

• “Inside the Machine”, J. Stokes, Ars Technica Library, 2007
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