Computing Architecture and its
Impact on Scientific Applications

¥
. O . - - N
B o 2 - . * . -
Y o, - -
S ExE w = > S
‘ & - . >
& =3
< / O -ty 4
P »
r B
s » .
= .

High Performance Computing
for High Energy Physics

Vincenzo Innocente
CERN
CMS Experiment

ESC, Bertinoro, October 2018

Why are we Here?

FUTURE VENTURES — 120 Years of Moore’s Law

Calculations per second per constant dollar

S %00

S %05
S 7(05

7

70

MECHANICAL {= WAV VACUUMTUBE TRANSISTOR INTEGRATED CIRCUIT
NVIDIA TITAN X
GTX 480
IBM
BLUE GENE
POWER
MAC
IBM ASCI
WHITE
B PENTIUM PC
CRAY 1
SUNT - \ppLE
MACINTOSH
WHIRLWIND DATA GENERAL
NOVA
ENIAC DECPDP-1 'BM360

COLOSSUS

IBM TABULATOR
HOLLERITH
TABULATOR

ANALYTICAL
ENGINE

7900 7905 79,0 7975 7920 79<~.$ 7930 7935 7940 7945 7950 7955 7960 7965 7970 7975 7980 7985

Year

/990 7995 2000 2005 2070 2075 2020

Source: Ray Kurzweil, Steve Jurvetson

Transistor number per chip

Moore’s Law

Moore’s Law
Gulftown Core 6

Ivy Bridge

* First published as:

April 1965.

* Accepted by all partners:

* Hardware integrators
* Software companies

9
10 Sandy Bridge
108 AMDKI0 @ Corei7

AMD K8 Core2 Quad
4 C06e2 Duo
ore Duo
107 AMDAthion Pentium M
AMD K6 Pentium 4
Pentium Il
Pentium Il
Pentium Pro

6

10 1486 __Pentium
MC68020 i860
80386
10°
80286 MC68000
8086
10* 8080
(.‘8008

103 4004

1970 1980 1990 2000 2010 2020

Year of introduction
10/18/18

* Us, the consumers

VI Architecture @ESC

* A marching order established ~5o years ago

* "Let’s continue to double the number of
transistors every other year!”

* Moore, G.E.: Cramming more components
onto integrated circuits. Electronics, 38(8),

* Semiconductor manufacturers

Dennard scaling law

(downscaling)

new VLSI gen.
oldVLSI gen.

do not hold anymore!

D'=1/12=4D
PP=P

- Now, power and/or heat generation are the
limiting factors of the down-scaling

- Supply voltage reduction is becoming difficult,
because Vth cannot be decreased any more,

=
o
)
1

The core frequency

and performance do not
grow following the
Moore’s law any longer

MIPS/CPU clock speed

"
O.‘
i

100 <

g
|]
o~

¥,
2

T T T T
1980 1985 1990 1995

Increase the number of cores
to maintain the

as desoribed later. » 12 =4 *D architectures evolution

- Growth rate in clock frequency and chip area D P
becomes smaller.

on the Moore’s law

The power crisis! Programming crisis!

10/18/18 VI Architecture @ESC Credit: Carlo Cavazzoni, CINECA

T T T
2000 2005 2010

5

Consequences

e The 7 wfot” years of . 40 Years of Microprocessor Trend Data
frequency scaling: !

e The Pentium Proin 10°
1996: 150 MHz (22W)

* The Pentium 4 in 2003: .
3.8 GHz (~25x) (225W) 10

Transistors
(thousands)

Single-Thread
Performance
(SpecINT x 10°)

10°

Frequency (MHz)

. 3
* Since then 10 |
Typical Power
* Core 2 systems: 10 (Watts)
° ~3 GHZ 101 tlumbelré)f
e Multi-core : ogical Lores
100 _;’
* Recent CERN purchase: :
* Intel Xeon E5-2630 v3 1970 1980 1990 2000 2010 2020
« “only” 2.40 GHz (85W) - Year
Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten
° 8 core New plot and data collected for 2010-2015 by K. Rupp

10/18/18 VI Architecture @ESC 6

Memory Latency

Time 15 sec
sec _A Time f9r a 64-bit Today’s computers now take
Atanasoff- Multiply-Add much longer to fetch or store

than to add and multiply.

msec 16 msec

1psec Cray ITM
13 Cray2

nsec 130
nsec

Time for a 64-bit
Hsec - Memory Fetch

100 nsec

1 Lsec 90 nsec
ILLIAC IV _
84 nsec29 e Pentium I Xeon 5500
nsec 4 nsec :
T T T T T T T ~ ns?c >
1940 1950 1960 1970 1980 1990 2000 2010
Year

10/18/18 VI Architecture @ESC

Simple, but illustrative example
* Intel KNL has ~64 cores @1.30GHz, 2FMA port
(VPU) each, 4-way hardware threading, hardware
vectors of size 8 (Double Precision), 16GB of fast
memory:

* 3TFLOPS DP for 400GB/s = 0.5bit/flop-sp
* 60 fp-opS =1 fp-load

< 16 GiB on-package MCDRAM, ~ 400 GB/s

_ PCle _
CORE|CORE| |CORE|CORE| [CORE|CORE| |[CORE|CORE| |CORE|CORE| |[CORE|CORE

L2 L2 L2 L2 L2 L2

CORE|CORE| |CORE|CORE| |[CORE COREI ICORE ICORE| |CORE|CORE| |CORE|CORE
L2 L2 L: 36 TILES 2 L2 L2

corelcore| [corelcore| [corel72 CORES jeoge| |corelcore| |corelcore
L2 L2 L2 L2 L2 L2

DDR4 CONTROLLER
DDR4 CONTROLLER

CORE[CORE| [CORE|CORE| |CORE|CORE| |[CORE|CORE| |CORE|CORE| |CORE|CORE
L2 L2 L2 L2 L2 L2

|

I

< 384 GiB system DDR4, ~90 GB/s

10/18/18 VI Architecture @ESC

Streaming Multiprocessor Architecture

PCI Express 3.0 Host Interface

NVIDIA Pascal
GPC GPC
aStngine TPC 2 TPC TPC Stngine T 32 CU DA Core

Memory Controller
J8jj0U0) Alowap

Floating Point Units
@1.7GHz
8GB fast memory

EE— ——] — EE— EE— — —— | — EE— E— =
=

Memory Controller

Require 110 fp-ops
to hide
one memory access!

roller

= —— | —— —— —— | — —— —— —— — ——

Memory Con
a9)jonu0) Klowapy

NVIDIA Memory Bandwidth per FLOP (In Bits)

“ Bandwidth/FLOP Total FLOPs | Total Bandwidth

GTX 1080 0.29 bits 8.87 TFLOPs 320GB/sec

TPC TPC TPC TPC TPC
* 8 3 3 8 =5

Memory Controller

GTX 980 0.36 bits 4.98 TFLOPs 224GB/sec
GPC
GTX 680 0.47 bits 3.25 TFLOPs 192GB/sec
credit AnandTech GTX 580 0.97 bits 1.58 TFLOPs 192GB/sec

10/18/18 VI Architecture @ESC

Do More with Less

* Improving throughput and/or latency requires exploiting optimal
massive parallelization at all levels

* Speeding up algorithms will not pay up if memory access is not
reduced

Computing Architecture

Von Neumann architecture

* From Wikipedia:

* The von Neumann architecture
is a computer design model
that uses a processing unit and
a single separate storage
structure to hold both
instructions and data.

* It can be viewed as an entity
into which one streams
instructions and data in order
to produce results

Algorithms and Data Structures

Instructions

Data

Results

Input

Processing

Simple server diagram

* Multiple components which
interact during the execution
of a program:

 Processors/cores

* w/private caches
* |-cache, D-cache

Shared caches

Socket o

Co | G2

C2 | C3

C4 | Cg

Shared
cache

* |nstructions and Data

* Memory controllers -
* Memory (non-uniform) Memory

/O subsystem
* Network attachment
* Disk subsystem

10/18/18 VI Architecture @ESC

Mem-ctl

N/

Interconnect

1/O bus

Memory

Intel Nehalem

13

Single Core Architecture

10/18/18

Instruction Fetch and
Pre Decode

Instruction Queue

Decode

Rename/Allocate

Retirement Unit
(ReOrder Buffer)

Reservation Station

Execution Units

DTLB

32kB
Data Cache

32kB

Instruction Cache

2nd | eyel TLB

VI Architecture @ESC

256kB
2™ | evel Cache

Enhanced Processor Core

Front End
Execution
Engine
Memory

L3 and beyond

Back End
Execution
Engine

15

Architecture: front end

Feeds “decoded” instructions to the
scheduler

Haswell

Affected by instruction non-locality
(iCache-miss, iTLB misses) and
misspredicted branches

)) 6 Instructions
Main metrics:

L1-icache-load-misses (icache.ifdata_stall)
Cycles where a code fetch is stalled due to L1

instruction cache miss.

branch-misses (br_misp_retired.all_branches)

This event counts all mispredicted branch
instructions retired.

4 pops
32B
10/18/18 VI Architecture @ESC

Architecture: Out of order scheduler

Haswell (56 pop Decode Queue

)

4 uops\l\

(192 Entry Reorder Buffer (ROB)

)

|
! ¥ ! ¥

168 Integer 168 AVX 48 Entry Branch 72 Entry 42 Entry
Registers Registers Order Buffer Load Buffer Store Buffer

]

! ! ! ! !

(60 Entry Unified Scheduler

)

Main metric:
rs_events.empty_cycles

This event counts cycles during which the reservation station (RS) is empty
RS == Unified scheduler

10/18/18 VI Architecture @ESC

17

Out-of-order (OOO) scheduling

Most modern processors use OOO scheduling

* This means that they will speculatively execute instructions ahead
of time (Xeon: inside a “window” of ~150 instructions)

* In certain cases the results of such executed instructions must be
discarded
At the end, there is a difference between “executed instructions” and
“retired instructions”
* One typical reason for this is mispredicted branches

Potential problem with OOO:
* Alot of extra energy is needed!

Interestingly: ARM has two designs:
* A3 (low power, in-order), As7 (high power, OOO)

Architecture: Backend [=

Computational engine

Affected by

* instruction dependency
* instruction parallelism
* pipelining

¢ Memory access

* Latency of “heavy instructions”
* divsqrt

* Vectorization

Main Metrics:
uops_executed.stall_cycles

[Port 0 [Port1 [Port 2 [Port 3 [Port 4 [Port 5 | Port 6 | Port 7 |
| | 1 | | |

Integer Load Load /| |\ Store)lnbeger Integer Store
Alu Data Data Data Alu Alu Address
I 1 | | I | |

Integer Integer Store Store Integer Integer
Shift LEA Address Address LEA Shift
vecint | [vector Vec Int -

ALU Logical ALU
1 | |
Vector PSAD optor
] | I 1
Vector String Vector
ngical Compare Logical
l _—
Vec FM f';ecvrm
~—_1 N e

x87 FP 87 FP . .

Multiply | | Add = [ntel’s Haswell micro-architecture can
o execute four instructions in parallel
o (across eight ports) in each cycle.

Integer
MUL

This event counts cycles during which no uops were dispatched from the Reservation Station (RS)

uops_executed.thread

Number of uops to be executed each cycle.

cycle_activity.stalls_mem_any

Execution stalls while memory subsystem has an outstanding load.

arith.divider_active

10/18/18

VI Architecture @ESC

Cycles when divide unit is busy executing divide or square root operations. Accounts for integer and floating-point operations.

19

Real-life latencies

* Most integer/logic instructions have a one-cycle execution latency:
* For example (on an Intel Xeon processor)
* ADD, AND, SHL (shift left), ROR (rotate right)
* Amongst the exceptions:
* IMUL (integer multiply): 3

* IDIV (integer divide): 13 — 23 As of Haswell:

* Floating-point latencies are typically multi-cycle FMA (5 cycles)
As of Skylake:
* FADD (3), FMUL (5) SIMD ADD, MUL,FMA: 4 cycles

* Same for both x87 and SIMD double-precision variants

* Exception: FABS (absolute value): 1
* Many-cycle, no pipepine : FDIV (20), FSQRT (27)

e Other math functions: even more

Latencies in the Core micro-architecture (Intel Manual
No. 248966-026 or later).
AMD processor latencies are similar.

http://www.agner.org/optimize/instruction_tables.pdf

10/18/18 VI Architecture @ESC 20

Instruction pipelining

* Instructions are broken up into stages.
* With a one-cycle execution latency (simplified):

TR E

* With a three-cycle execution latency:

10/18/18 VI Architecture @ESC

Latencies and serial code (1)

* In serial programs, we typically pay the
penalty of a multi-cycle latency during

execution:
* In this example:

* Statement 2 cannot be started before

statement 1 has finished

» Statement 3 cannot be started before

statement 2 has finished

I-F | I-D | EX-1|EX-2| EX-3|EX-4|EX-5|W-B

-E | ID| - | - | - | - |EXa

EX-2

W-B

double a, b, ¢, d, e, f;
b=2.0;c=3.0; e =4.0;

a=Db*c; [/Statementa

d=a+e; /[Statement 2

f = fabs(d); //Statement3

EX-1

W-B

10/18/18

VI Architecture @ESC

Latencies and serial code (1)

* In serial programs, we typically pay
the penalty of a multi-cycle latency
during execution:

* In this example:

10/18/18

* Statement 2 cannot be started before

statement 1 has finished

« Statement 3 cannot be started before

statement 2 has finished

double a, b, ¢, d, e, f;
b=2.0;c=3.0; e =4.0;
a=Db*c; [/Statementa

fa\b+e;
d=a+f; //Statement 2

f = fabs(d); //Statement3

I-F | I-D | EX-1|EX-2| EX-3|EX-4|EX-5|W-B
I-F | I-D |EX-1|EX-2| EX-3|W-B
I-F | I-D EX-1|EX-2|EX-3|W-B
I-F | I-D EX-1|W-B

VI Architecture @ESC

23

Latencies and serial code (2)

I-F | I-D | EX-1|EX-2| EX-3|EX-4|EX-5|W-B

I-F | I-D - - = - |EX-1|EX-2|EX-3|W-B

I-F | I-D - - - - - - |EX-21|W-B

* Observations:

 Even if the processor can fetch and decode a new instruction every
cycle, it must wait for the previous result to be made available

* Fortunately, the result takes a ‘bypass’, so that the write-back stage does
not cause even further delays

* Theresult: CPlis equal to 3
* g execution cycles are needed for 3 instructions!

* A good way to hide latency is to [get the compiler to] unroll (vector)
loops !

10/18/18 VI Architecture @ESC

Memory architecture

Cache/Memory Hierarchy

* From CPU to main memory on
a recent Haswell processor

* With multicore, memory
bandwidth is shared
between cores in the same

processor (socket)

Main metrics:
La-dcache-loads, L1-dcache-load-misses
LLC-loads, LLC-load-misses (LastLevelCache)

mem_load_retired.l1_hit
mem_load_retired.l2_hit

(R:64B + W:32B)/1c

mem_load_retired.I3_hit
mem_load_retired.[3_miss

Lal L1D |
(32 KB) (32 KB) 4C latency
T Lo T R: 64B/1c
(256 KB) 11c latency
32B/1c for all cores
> 21c¢ latency
Shared L3
(~20 MB)

offcore_requests.all_requests

offcore_requests_outstanding.demand_data_rd_ge_6

cycle_activity.stalls_mem_any

10/18/18

Local/remote memory

(large, but typically non-uniform)

VI Architecture @ESC

~24 B/c for all cores
> 200c latency

c=cycle

26

Latency Measurements (example)

* Memory Latency on Sandy Bridge-EP 2690 (dual socket)

* go ns (local) versus 150 ns (remote)

«Memory

10/18/18

(G aeket o Socket 1
Co | Ca Eg: Ca
C2 | C3 C2 | C3
C4 | Cg C4 | Cg
Shared Shared
cache cache
Mem-ctl Mem-ctl

Interconnect
I/O bus | _.__.-

o — - — - — -

VI Architecture @ESC

- — — — —
o—*

e @ e 8 @ s e @ e e @ e @
*

27

Recent architectures

10/18/18

The numbers we looked at were "Random load latency stride=16 Bytes" (LMBench).

Mem

Hierarchy

L1 Cache (cycles)

L2 Cache (cycles)

L3 Cache 4-8 MB(cycles)
16 MB (ns)

32-64 MB (ns)

Memory 96-128 MB (ns)

Memory 384-512 MB (ns)

IBM POWERS Intel Broadwell Intel Broadwell
Xeon E5-2640v4 Xeon E5-2699v4
DDR4-2133 DDR4-2400
3 4 4
13 12-15 12-15
27-28 (8 ns) 49-50 50
55 ns 26 ns 21ns
55-57 ns 75-92 ns 80-96 ns
67-74 ns 90-91 ns 96 ns
89-91 ns 91-93 ns 95 ns
Source AnandTech

VI Architecture @ESC

28

Cache lines (1)

* When a data element or an instruction is requested by
the processor, a cache line is ALWAYS moved (as the
minimum quantity), usually to Level-1

I I | requested | I I I I |

* A cachelineis a contiguous section of memory, typically
64B in size (8 * double) and 64B aligned

* A32KB Level-1 cache can hold 512 lines

* When cache lines have to be moved come from memory

* Latency is long (>200 cycles)
* Itis even longer if the memory is remote

* Memory controller stays busy (~8 cycles)

Cache lines (2)

 Good utilisation is vital

* When only one element (4B or 8B) element is used inside the
cache line:
* Alot of bandwidth is wasted!

| l | requested | l l l l !

* Multidimensional C arrays should be accessed with the last index
changing fastest:

for (auto & a : v)
a->xX += increment;

* Pointer chasing (in linked lists) can easily lead to “cache thrashing” (too
much memory traffic)

Cache lines (3)

* Prefetching:
* Fetch a cache line before it is requested
* Hiding latency
* Normally done by the hardware
 Especially if processor executes Out-of-order

* Also done by software instructions
* Especially when In-order (IA-64, Xeon Phi, etc.)

* Locality is vital:
* Spatial locality —Use all elements in the line

* Temporal locality — Complete the execution whilst the
elements are certain to be in the cache

Programming the memory hierarchy is an art in itself.

Further reading:

* “Designing and Building Parallel Programs”, |. Foster, Addison-Wesley, 1995

* “Foundations of Multithreaded, Parallel and Distributed Programming”, G.R. Andrews,
Addison-Wesley, 1999

« “Computer Architecture: A Quantitative Approach”, J. Hennessy and D. Patterson, 3
ed., Morgan Kaufmann, 2002

» “Patterns for Parallel Programming”, T.G. Mattson, Addison Wesley, 2004

* "“Principles of Concurrent and Distributed Programming”, M. Ben-Ari, 2" edition,
Addison Wesley, 2006

* “The Software Vectorization Handbook”, A.J.C. Bik, Intel Press, 2006

* “The Software Optimization Cookbook”, R. Gerber, A.J.C. Bik, K.B. Smith and X. Tian;
Intel Press, 2" edition, 2006

* "“Intel Threading Building Blocks: Outfitting C++ for Multi-core Processor Parallelism”, J.
Reinders, O'Reilly, 15t edition, 2007

* “Inside the Machine”, J. Stokes, Ars Technica Library, 2007

