
Expressing parallelism in C++

Felice Pantaleo
CERN Experimental Physics Department

felice@cern.ch

2

Real-time feedback

● click here
● Typos, confused explanations, bad examples
● This is very important to ensure the best teaching

standards!

2

https://docs.google.com/document/d/1qrhT3JoDezhlZNYrwClh_3k-yB-q_Hfo0quaKPBTZkU/edit?usp=sharing

3

You will learn...

● Threads and Concurrency
● std::threads
● locks/mutual execution
● atomics
● Near future parallel algorithms
● Intel Threading Building Blocks
● Parallel execution with tbb
● Tasks parallelism

3

4

Threads

● A thread is an execution context, a set of register values
● Defines the instructions to be executed and their order
● A CPU core fetches this execution context and starts

running the instructions: the thread is running
● When the CPU needs to execute another thread, it

switches the context , i.e. saving the previous context
and loading the new one
– Context switching is expensive
– Avoid threads jumping from a CPU core to another

4

5

Threads enable concurrency

● Concurrency does not imply parallelism
● If your program contains independent parts, they are

the perfect candidates for running concurrently
● Restaurant for dinner:

– cooking food and preparing the tables are independent
tasks and they can be performed by different workers to
gain a speed-up

5

6

Critical Path

● T = 1 is the time to compute a
red box

● Serial Time = 8
● Span = 6
● Maximum speed-up = 8/6 ~ 1.33
● Speed up with 2 cores = 1.33
● Speed up with 100 cores = 1.33

7

std::threads – Hello World

#include <thread>

#include <iostream>

int main()

{

}

compile with

g++ std_threads.cpp -lpthread -o std_threads

8

std::threads – Hello World

#include <thread>

#include <iostream>

int main()

{

}

Define a fuction that prints Hello world

void f(int i){

 std::cout << “Hello world from thread” << i <<
std::endl;

}

9

std::threads – Hello World

#include <thread>

#include <iostream>

int main()

{

 auto f = [](int i){

 std::cout << "hello world from thread " << i << std::endl;

 };

//Construct a thread which runs the function f

 std::thread t0(f,0);

//and then destroy it by joining it

 t0.join();

}

10

Congratulations!

● You have just written your first concurrent program
● Let's add some more threads and look at the output

11

std::threads – Hello World
#include <thread>

#include <iostream>

int main()

{

 auto f = [](int i){

 std::cout << "hello world from thread " << i << std::endl;

 };

//Construct a thread which runs the function f

 std::thread t0(f,0); std::thread t1(f,1); std::thread t2(f,2);

//and then destroy it by joining it with the main thread

 t0.join(); t1.join(); t2.join();

}

12

Fork-join

● The construction of a thread is asynchronous, fork
● Threads execute independently
● join is the synchronization point with the main thread

13

Before we move on, measuring time
#include <chrono>

...

auto start = std::chrono::system_clock::now();

 foo();

auto stop = std::chrono::system_clock::now();

std::chrono::duration<double> dur= stop - start;

std::cout << dur.count() << " seconds" << std::endl;

foo() is the function that you want to measure

Be careful, asynchronous functions return immediately: remember to synchronize
before stopping the timer.

14

Exercise 1

● You want to sum the elements of a vector of 2^10
integers in parallel using 4 threads

● Accumulate the sum in the variable sum
● Let's start by creating a thread
● Brainstorming time!

15

Data Race

The execution of a program contains a data race if, in
the entire phase space of all the possible states and
actions performed by the threads of the program, there
is at least a time interval in which two actions read and
write on a memory location in an unspecified and
non-synchronized order.
If a data race occurs, the behavior of the program is
undefined.

16

std::mutex

● Avoiding that multiple threads access a shared variable
● Use it together with a scoped lock:

#include <mutex>

std::mutex myMutex;

...

{

 std::lock_guard<std::mutex> myLock(myMutex);

 //critical section begins here

 std::cout << "Only one thread at a time" << std::endl;

} // ends at the end of the scope of myLock

17

Exercise 2 - Pi

We know that:

– The integral can be
approximated as the sum
of the rectangles:

18

Numerical integration

constexpr int num_steps = 1<<20;

double pi = 0.;

constexpr double step = 1.0/(double) num_steps;

double sum = 0.;

for (int i=0; i< num_steps; i++){

 auto x = (i+0.5)*step;

 sum = sum + 4.0/(1.0+x*x);

}

pi = step * sum;

std::cout << "result: " << std::setprecision (15) << pi << std::endl;

● Try to parallelize it
● Measure time vs number of threads, vs number of steps, play with parameters and check
precision

● Measure time since the beginning of the program and measure the effect of the sequential
part. What's the maximum speed-up that you can get?

● Try privatization
● What happens if one thread runs over more steps than the others? Why?

19

False Sharing

● Suppose that:
– a cache line is 64bytes
– two threads (x and y) run on processors that share their cache
– we have two arrays int A[500], B[500]
– the end of A and the beginning of B are in the same cache line
– thread x modifies A[499], and loads the corresponding cache-line

in cache
– thread y modifies B[0]

● The processor needs to flush the cache lines, reloading the
cache for thread x and invalidating the cache for thread y

● Solution: align/padding to cache-line size

20

Exercise 3 - π with Monte Carlo

● The area of the circle is π
● The area of the square is 4
● Generate N random x and y

between -1 and 1:
– if r < 1: the point is inside the

circle and increase Nin

– The ratio between Nin and N
converges to the ratio between
the areas

21

std::atomic

● Atomic types:
– encapsulate a value whose access is guaranteed to not cause data races
– Other threads will see the state of the system before the operation

started or after it finished, but cannot see any intermediate state
– can be used to synchronize memory accesses among different threads
– At the low level, atomic operations are special hardware instructions

(hardware guarantees atomicity)
● Common architectures have atomic fetch-and-add instructions

for integers
● C++11: std::atomic
● #include <atomic>
● std::atomic<int> x(0); int a = x.fetch_add(42);

22

Trivially copyable

● The primary std::atomic template may be instantiated
with any TriviallyCopyable type T
– Continuous chunk of memory
– Copying the object means copying all bits (memcpy)
– No virtual functions, noexcept constructor

● std::atomic<int> i; // OK
● std::atomic<double> x; // OK
● struct S { long x; long y; }; std::atomic<S> s; // OK!

23

std::atomic<T>
● read and write operations are always atomic
● std::atomic<T> provides operator overloads only for

atomic operations (incorrect code does not compile)
– std::atomic<int> x{0}
– ++x;
– x++;
– x += 1;
– x |= 2;
– x *= 2; //this is not atomic and will not compile
– int y = x * 2; // atomic read of x
– x = y + 1; // atomic write of x
– x = x + 1; // atomic read and then atomic write
– x = x * 2; // atomic read and then atomic write
– int z = x.exchange(y); // Atomically: z = x; x = y;

24

Some measurements
● Now you're ready to increase the number of threads!
● Time vs number of threads?
● Effect of privatization?

● Hint for creating multiple threads:
unsigned int n = std::thread::hardware_concurrency();

std::vector<std::thread> v;

for (int i = 0; i < n; ++i) {

 v.emplace_back(f);

}

for (auto& t : v) {

 t.join();

}

25

Compare-and-swap (CAS)

bool success = x.compare_exchange_strong(y, z);

● If x==y, make x=z and return true
● Otherwise, set y=x and return false
std::atomic<int> x{0};

int x0 = x;

while (!x.compare_exchange_strong(x0, x0+1)) {}

std::cout << "x: " << x << " x0: " << x0 << std::endl;

$./atomic_CAS

x: 1 x0: 0

26

27

Expressing Parallelism with
Intel Threading Building Blocks

29

Why TBB?

● Intel Threading Building Blocks is a library which
allows to express parallelism on CPUs in a C++
program

● Parallelizing for loops can be tedious with std::threads
● One wants to achieve scalable parallelism, easily
● To use the TBB library, you specify tasks, not threads,

and let the library map tasks onto threads in an
efficient manner

30

Why TBB?

● Direct programming with threads forces you to do the
work to efficiently map logical tasks onto threads

● TBB Runtime library maps tasks onto threads to
maximize load balancing and squeezing performance
out of the processor
– Better portability
– Easier programming
– More understandable source code
– Better performance and scalability

31

Hello World

● Set the environment
wget
https://github.com/01org/tbb/releases/download/2018_U6/tbb2018
_20180822oss_lin.tgz

tar -xzf tbb2018_20180822oss_lin.tgz

cd tbb2018_20180822oss

source bin/tbbvars.sh intel64 linux auto_tbbroot

32

Hello World

#include <tbb/tbb.h>

#include "tbb/task_scheduler_init.h"

#include <iostream>

int main()

{
tbb::task_scheduler_init init;

std::cout << “Hello World!” << std::endl;

}

● Compile:
g++ hello_world.cpp -ltbb

33

Thread pool

● A number of threads will be reused throughout your application to avoid
the overhead of spawning them.

● They are created when you initialize the scheduler

// analogous to hardware_concurrency, number of hw threads:

int n = tbb::task_scheduler_init::default_num_threads();

// or if you wish to force a number of threads:

int p = 10; //running with 10 threads

tbb::task_scheduler_init init(p);

34

Parallelizing for loops with tbb

for(int i =0; i<N; ++i) x[i]++;

becomes
tbb::parallel_for(

 tbb::blocked_range<int>(0,N,<G>),

 [&](const tbb::blocked_range<int>& range)

 {

 for(int i = range.begin(); i< range.end(); ++i)

 {

 x[i]++;

 }

 }, <partitioner>);

35

Scalability

● A loop needs to last for at least 1M clock cycles for
parallel_for to become worth it

● If the performance of your application improves by
increasing the number of cores, the application is said to
scale strongly. There is usually a limit to the scaling.

● Usually, adding more cores than the limit does not only
result in performance improvements, but performance falls.
– Overhead in scheduling and synchronizing many small tasks

starts dominating
● TBB uses the concept of Grain Size to keep data splitting

to a reasonable level

36

Grain Size

● If GrainSize is 1000 and the loop iterates over 2000
elements, the scheduler can distribute the work at
most to 2 processors

● With a GrainSize of 1, most of the time is spent in
packaging

37

Automatic Partitioner

● The automatic partitioner is often more than enough
to have good performance

● Heuristics that:
– Limits overhead coming from small grain size
– Creates opportunities for load balancing given by not

choosing a grain size which is too large
● Sometimes controlling the grainSize can lead to

performance improvements

38

Partitioners

● affinity_partitioner can improve performance when:
– data in a loop fits in cache
– there the ration between computations and memory

accesses is low
● simple_partitioner enables the manual ninja mode

– You need to specify manually the grain size G
– The default is 1, in units of loop iterations per chunk
– Rule of thumb: G iterations should take at least 100k clock

cycles

39

Mutexes

● Header: #include "tbb/mutex.h"
● Wrapper around OS calls:

– Portable across all operating systems supported by TBB
– Releases the lock if an exception is thrown from the

protected region of code
● Usage:

tbb::scoped_lock myLock(myMutex);

● If the lock is lightly contended and the duration of the
critical section is small, use spin_mutex
– thread busy waits for lock to be released

40

Exercises 2 and 3 with tbb

● Try replacing std::threads with a tbb::parallel_for in
exercises "numerical integration" and "Montecarlo Pi"

● Measure time to determine strong and weak scaling
● Compare with C++ threads

41

Concurrent containers

● Concurrent containers allow concurrent thread-safe
read-write access by multiple threads
tbb::concurrent_vector<T>

tbb::concurrent_queue<T>

tbb::concurrent_hashmap<Key,T,HashCompare>

42

Exercise 5 - Parallel Histogram

● Generate 500M floats normally distributed with
average 0 and sigma 20

● Create a thread-safe histogram class with 100 bins of
width 5 (first and last bins contain overflow)

● Use parallel for to push these numbers in the histogram
● Measure strong scaling
● Measure how performance changes, when modifying

the number of bins
● Can you think of another pattern for mitigating high

contention cases?

43

Parallel Scheduler

● Efficient load balancing by work stealing
● Reduce context switching
● Preserve data locality
● Keep CPUs busy
● Start/terminating tasks is up to 2 orders of magnitude

faster than spawning/joining threads

44

Depth-first execute, breadth-first theft

● Strike when the
cache is hot
– The deepest

tasks are the
most recently
created tasks
and, therefore,
the hottest in
the cache

● Minimize space

45

Task Parallelism with TBB
● A task_group is a container of potentially concurrent and independent tasks
● A task can be created from a lambda or a functor

 #include "tbb/task_group.h"

 using namespace tbb;

 int Fib(int n) {

 if(n<2) {

 return n;

 } else {

 int x, y;

 task_group g;

 g.run([&]{x=Fib(n-1);}); // spawn a task

 g.run([&]{y=Fib(n-2);}); // spawn another task

 g.wait(); // wait for both tasks to complete

 return x+y;

 }

 }

46

Exercise 6 - pi

● Replace the parallel for with tasks
● Play with the partitioner

47

Exercise 7 - Graph Traversal
● Generate a direct acyclic graph represented as a std::vector<Vertex> graph of 20

vertices:

struct Vertex {

 unsigned int N;

 std::vector<int> Neighbors;

}

● If there is a connection from A to B, the index of the element B in graph needs to be
pushed into A.Neighbors.

● Make sure that from the first element of graph you can visit the entire graph.
● Once generated, when you visit a vertex X of the graph, you compute Fib(X.N).
● Generate Vertex.N uniformly between 30 and 40.
● Remember to keep track of which vertex has already been visited.

Parallel algorithms in C++

49

Parallel algorithms in C++

● Starting from C++17, parallel/vectorized versions of
standard algorithms started to appear

● You mostly don't have to think about what kind of
parallel implementation is hidden under the hood

● You can control the behavior by changing the
execution policy

50

Execution Policies (since C++17)

● std::execution::seq : a parallel algorithm's execution
may not be parallelized.

● std::execution::par : indicate that a parallel
algorithm's execution may be executed in an unordered
fashion in unspecified threads, and sequenced with
respect to one another within each thread.

● std::execution::par_unseq : indicate that a parallel
algorithm's execution may be executed in an unordered
fashion in unspecified threads, and unsequenced with
respect to one another within each thread.

51

Parallel Algorithms
● std::accumulate
● std::adjacent_difference
● std::inner_product
● std::partial_sum
● std::adjacent_find
● std::count
● std::count_if
● std::equal
● std::find
● std::find_if
● std::find_first_of
● std::for_each
● std::generate
● std::generate_n
● std::lexicographical_compare
● std::mismatch
● std::search

std::search_n
● std::transform
● std::replace
● std::replace_if
● std::max_element
● std::merge
● std::min_element
● std::nth_element
● std::partial_sort
● std::partition
● std::random_shuffle
● std::set_union
● std::set_intersection
● std::set_symmetric_difference
● std::set_difference
● std::sort
● std::stable_sort
● std::unique_copy

52

Examples of what will be possible

std::vector<int> v;

// fill the vector

...

// sort it in parallel

std::sort(std::par, v.begin(), v.end());

// apply a function foo to each element

std::for_each(std::par_unseq, v.begin(), v.end(), foo);

53

Unordered algorithms

std::vector<int> v;

// fill the vector

...

// reduce it in parallel

// reduction_binary_op has to be commutative and associative
 // operation

auto y = std::reduce(std::par_unseq, v.begin(), v.end(),
[initialvalue], [reduction_binary_op]);

54

std::transform_reduce, aka the parallel C++ swiss knife

● Takes a container of elements of type T
● Produces an object of type R
● Requires a transformation function

R foo(const T&)

● Requires a requires a binary operation:
 R bar(const R&,const R&)

● Requires an initial value for the reduction

55

example
● The norm of a vector is:

sqrt(x[0]*x[0] + x[1]*x[1] + ... + x[N-1]*x[N-1])

std::vector<double> v; // fill it

double result2 =
std::transform_reduce(std::par_unseq,

v.begin(), v.end(),
// transform
[](double elt) { return elt*elt; },
// initial value
0.0,
// reduction
[](double x, double y) {return x+y;}
);

double norm = std::sqrt(result2);

