
Efficient Memory
Management

Vincenzo Innocente - CERN
Original lectures by Giulio Eulisse - CERN
and Lassi Tuura (FNAL, now Google)

�1

Graphics Toolkits

About These Lectures
These lectures will address memory use and management in large scale
scientific computing applications, with Linux/C++ focus.

I will introduce general concepts mainly through specific concrete examples
common to everyday developer work. I will focus on common aspects on
commodity hardware, in areas I am personally experienced in – this is not a
tour of absolutely everything there is to know about memory management.

�2

Graphics Toolkits

http://infn-esc.github.io/esc18/memory  
All the exercise material for these lectures

�3

http://infn-esc.github.io/esc18/memory

Graphics Toolkits

Additional Reading
J. Hennessy, D. Patterson, 
Computer Architecture: A Quantitative Approach, 
5th edition (2011), ISBN 978-0-12-383872-8

U. Drepper, 
What Every Programmer Should Know About Memory, 
http://people.redhat.com/drepper/cpumemory.pdf

D. Bovet, M. Cesati, 
Understanding the Linux Kernel, 
3rd Edition, O’Reilly 2005, ISBN 0-596-00565-2

http://techreport.com, reviews with technical detail

http://jemalloc.net one of the best memory manager

�4

http://techreport.com
http://jemalloc.net

Graphics Toolkits

Why Memory Management Matters?
So, you’ve got a problem to solve. You’ve designed an algorithm to solve it.
Now all you need is it code it up and you are done, right?

Actually, you have just begun. Your algorithm will translate to real machine
code, which will run on very real physical systems, which have very real
practical limitations.

A complete design must account for the real world limitations. This means “the
solution” will vary over time with technology evolution.

�5

Graphics Toolkits

Memory performance evolution compared with processor performance

The Performance Gap

�6

Graphics Toolkits

Why Memory Management Matters?
Different solutions to the same problem vary dramatically in real life
performance.

Algorithmic and data structure changes can easily result in several orders of
magnitude improvement and regression. Always research this option first.
In some cases, changes in memory use and management can also
easily produce orders of magnitude performance wins and losses –
even without major logical change to the underlying algorithms.
Common critical factors include memory churn, poor locality, and in
multi-processing, memory contention.
In other cases, simple, subtle changes can yield performance wins in
the 1-10% range. When % of your computing capacity is counted in
rows of racks and days of processing, this still matters a great deal in
practice! The small stuff still directly affects how much science you get
out of your funding.

�7

Graphics Toolkits

Memory Management at 10’000ft
Physical hardware

CPU pipelines and out-of-order execution; memory management unit
[MMU] and physical memory banks and access properties; interconnect –
front-side bus [FSB] vs. direct path [AMD: HT, Intel: QPI]; cache coherence
and atomic operations; memory access non-uniformity [NUMA].

Operating system kernel
Per-process linear virtual address space; virtual memory translation from
logical pages to physical page frames; page allocation and swapping; file
and other caching; shared memory.

Run time
Code, data, heap, thread stacks; acquiring memory [sbrk/mmap]; sharing
memory [shmget/mmap/fork]; C/C++ libraries and containers; application
memory management.

�8

Memory hierarchy

Core

L3 Cache

Core Core Core

L2 Cache L2 Cache

L1 Cache L1 Cache L1 Cache L1 Cache

2 - 8 cores per die, 1 - 2
dies per package,1-N
packages per system.
3 levels of cache
• Small [32kB] separate

L1 I+D  
caches for each core.

• Medium [256kB - 6MB]
combined L2 cache,
perhaps shared among
some cores.

• Large [4 - 20MB]
combined L3 cache
shared between all
cores on die.

• Can have even more
exotic setups, especially
when on cpu GPU is
present.

�9

Memory hierarchy

RAM
CPU

Cache

Disk

Exchange
cache-lines:

64 bytes*, aligned.

Exchange pages: 4096
bytes**, aligned.

�10
*: on most architectures
**: larger pages are available under certain cases

Graphics Toolkits

The Memory Wall
Average memory access time  
 = Hit time + Miss rate × Miss penalty.

I/D$: L1 hit = 2-3 clock cycles.
I/D$: L1 miss, L2 hit =~ 10-15 cycles.
TLB: L1 miss, L2 hit =~ 8-10 cycles.
TLB: L1 miss, L2 miss =~ 30+ cycles.
What happens when you drop to
memory?
Intel Netburst Xeon (Pentium-era)
memory latency was 400-700 clock
cycles depending on access pattern and
architecture.
AMD Opteron, Intel Core 2 and later
CPU memory latency is ~200 cycles
(times any NUMA overhead if crossing
interconnect).
Good cache efficiency matters.

�11

Non-Uniform memory access

RAM

CPU

Cache

CPU

CPU CPU

RAM

CPU

Cache

CPU

CPU CPU
RAM

CPU

Cache

CPU

CPU CPU

RAM

CPU

Cache

CPU

CPU CPU

RAM is not necessarily local anymore

Interconnect

�12

Graphics Toolkits

Operating System and Memory
The operating system manages processes and their address spaces.

Each process has a virtual linear address space to itself, isolated from other
address spaces and the kernel itself. Each process has one or more threads,
which share the address space but have a separate stack and execution state.

The operating system manages memory allocation and sharing.
Memory is used for kernel itself and files in the buffer cache. Applications can
share memory by referring to shared physical pages: just memory blocks,
buffer cache regions, or special objects such as pipe memory with vmsplice().
Methods to share memory include fork(), mmap() or shmget().
On NUMA systems the OS also manages process-to-physical memory
mapping. In practice application affinity hinting is necessary (cf. numactl).

http://man7.org/linux/man-pages/man1/top.1.html#OVERVIEW
http://man7.org/linux/man-pages/man5/proc.5.html
https://www.howtoforge.com/linux-pmap-command/

�13

http://man7.org/linux/man-pages/man5/proc.5.html

Virtual Memory

�14By Ehamberg - Own work, CC BY-SA 3.0,
https://commons.wikimedia.org/w/index.php?curid=8352077

RSS

VSS

SWAP

Graphics Toolkits

Today’s OSes give processes a flat* linear
virtual address space: the same linear
address in two different address spaces means
two entirely different physical addresses.

Virtual and real physical memory is divided in
pages, usually 4kB, but optionally 1-4MB. The
OS provides the CPU per-process page tables
to map a virtual address to a contiguous
physical page frame plus offset, which in turn
translates to memory bank, row and column.

Page tables themselves use memory,
consume L2+ cache space, and are never
swapped out.

Even if processes share physical page frames,
the page tables are not shared. With 4kB
pages, large address spaces mean big page
tables, even if the memory itself is shared:
there’s over 2MB of page tables for every 1GB
of committed address space.+

Virtual Memory

* CPUs also segment or otherwise divide memory in
regions; details in the references. “Flat” does not mean
“simple”, the address space can be a fairly hairy object.

+ 2GB VSIZE × 128 processes requires 0.5GB page tables.
�15

Graphics Toolkits

Special cache hardware called TLB, translation
look-aside buffer, accelerates virtual-to-physical
address mapping to avoid a full page table walk
on every memory op. TLB fits only a limited
number of pages.

Virtual Address Translation

A page which isn’t present or valid causes a page
fault. The OS handles these, e.g. code page is
read in from a file on disk on first use. Some page
table changes force a synchronous update on all
processors (“TLB shootdown”).

�16

Graphics Toolkits

This logical linked list…

Logical vs. Real Data Structures

Could be scattered in virtual
address space like this…

And in physical 
memory like this…

0GB

1GB

2GB

3GB

4GB

�17

Graphics Toolkits

Logical vs. Real Data Structures

The scatter is unimportant as long
as Ln and TLB caches hide all
latencies. Otherwise you must
explicitly arrange for a better
memory ordering.

There is no silver bullet to make
this problem go away.

Custom appl icat ion-aware
memory managers, such as pool /
slab / arena allocators, other data
structure changes, and affinity
hints are the tools.

0GB

1GB

2GB

3GB

4GB

�18

Graphics Toolkits

About Shared Memory
Shared memory is not special – it is completely natural and widely
used on modern systems, with many ways to initiate sharing:

Calling mmap() on a file in multiple processes can be used to create shared
read-only or read-write mappings, on any file region. Example: shared library
position independent code. One way to share static read-only data is to wrap
and load it as a shared library. Suitable use of mmap() + {f,m}advise() can map
windows of the OS buffer cache and provide hints on future use.
Calling fork() without exec() makes copy-on-write shared memory of the
entire process address space; writing to a page after fork() creates a private
copy. One of the simplest ways to create writeable transient shared memory
without file association is to use anonymous mmap() and then call fork().
It’s also possible to create persistent named shared memory with shmget().
Pages can be shuffled around with vmsplice(), tee() and remap_file_pages().

�19

Graphics Toolkits

B’s page #137 and A’s page
#123 are mapped to the same
physical frame #629, creating
shared memory.

#629 could be a read-only page
of common l ibrary code,
writeable memory created with
mmap() + fork() or shmget().

About Shared Memory

�20

void func(int n) {

 int k[n];

 auto * p = new int[n];
}

�21

�22

memory (Heap) management Runtime

KERNEL/OSPosix LibsC++ / std

brk, sbrk

mmap, munmap

madvice

malloc, calloc

realloc

free

posix_memalign

aligned_alloc

new, delete

aligned_storage

std::allocator

make_unique

make_shared

vector, list

map,

unordered_map

�23

Graphics Toolkits

Key Memory Management Factors
Many factors at different levels: physical hardware, operating system, in-
process run-time, language run-time, and application level.

#1: Correctness matters.
– If your results are incorrect, buggy, or unreliable, none of the rest matters.

#2: Memory overhead, alignment & churn matter.
– Badly coded good algorithm ≈ bad algorithm. If you spend all the time in

the memory allocator, your algorithms may not matter at all.

#3: Locality matters, courtesy of the memory wall.
– Cache locality – stay on the fast hardware, away from the memory wall.
– Virtual address locality – address translation capacity is limited.
– Kernel memory locality – share memory across processes.
– Physical memory locality – non-uniform memory access issues.

�24

Graphics Toolkits

Key Memory Management Factors
Many factors at different levels: physical hardware, operating system, in-
process run-time, language run-time, and application level.

#1: Correctness matters.
– If your results are incorrect, buggy, or unreliable, none of the rest matters.

#2: Memory overhead, alignment & churn matter
– Badly coded good algorithm ≈ bad algorithm. If you spend all the time in

the memory allocator, your algorithms may not matter at all.

#3: Locality matters, courtesy of the memory wall.
– Cache locality – stay on the fast hardware, away from the memory wall.
– Virtual address locality – address translation capacity is limited.
– Kernel memory locality – share memory across processes.
– Physical memory locality – non-uniform memory access issues.

�25

Graphics Toolkits

Key Memory Management Factors
Many factors at different levels: physical hardware, operating system, in-
process run-time, language run-time, and application level.

#1: Correctness matters.
– If your results are incorrect, buggy, or unreliable, none of the rest matters.

#2: Memory overhead, alignment & churn matter.
– Badly coded good algorithm ≈ bad algorithm. If you spend all the time in

the memory allocator, your algorithms may not matter at all.

#3: Locality matters, courtesy of the memory wall.
– Cache locality – stay on the fast hardware, away from the memory wall.
– Virtual address locality – address translation capacity is limited.
– Kernel memory locality – share memory across processes.
– Physical memory locality – non-uniform memory access issues.

�26

Memory Overheads

• Virtual Memory
• Size (VSZ): not a real issue

• Fragmentation: can become a real issue in particular
for long running jobs

• reboot machine time to time?

• Resident memory
• Size (RSS): IS an issue: swapping is not an option

• Churn: is an issue in particular if triggers system-calls

• cpu overhead, fragmentation

�27

Memory Monitoring: @System level

• /proc/meminfo : stat at node level

• cat /proc/meminfo | grep -i anon

• ps (top): stat at process level

• ps -eo pid,command,rss,vsz | grep a.out

• /proc/[pid]/smaps: details at process level

• pmap -X yourpid (| tail -n 1)

• parse it with a small C++/python program…

• strace : real-time or summary for system calls

• strace (-c/C) —e trace=memory ./a.out

�28

Memory Monitoring: @malloc level

• for jemalloc mallctl function provides a general
interface for introspecting the memory allocator

• http://jemalloc.net/jemalloc.3.html

• see memory_usage.cc for a simple, robust wrapper

• cpu overhead

• std::chrono

• perf record/report

�29

https://cmssdt.cern.ch/lxr/source/HLTrigger/Timer/plugins/memory_usage.cc

Graphics Toolkits

Key Memory Management Factors
Many factors at different levels: physical hardware, operating system, in-
process run-time, language run-time, and application level.

#1: Correctness matters.
– If your results are incorrect, buggy, or unreliable, none of the rest matters.

#2: Memory overhead, alignment & churn matter
– Badly coded good algorithm ≈ bad algorithm. If you spend all the time in

the memory allocator, your algorithms may not matter at all.

#3: Locality matters, courtesy of the memory wall.
– Cache locality – stay on the fast hardware, away from the memory wall.
– Virtual address locality – address translation capacity is limited.
– Kernel memory locality – share memory across processes.
– Physical memory locality – non-uniform memory access issues.

�30

Graphics Toolkits

The Memory Wall
Average memory access time  
 = Hit time + Miss rate × Miss penalty.

I/D$: L1 hit = 2-3 clock cycles.
I/D$: L1 miss, L2 hit =~ 10-15 cycles.
TLB: L1 miss, L2 hit =~ 8-10 cycles.
TLB: L1 miss, L2 miss =~ 30+ cycles.
What happens when you drop to
memory?
Intel Netburst Xeon (Pentium-era)
memory latency was 400-700 clock
cycles depending on access pattern and
architecture.
AMD Opteron, Intel Core 2 and later
CPU memory latency is ~200 cycles
(times any NUMA overhead if crossing
interconnect).
Good cache efficiency matters.

�31

Array of Structures

std::vector< >

T matrix[N][4];

Structure of Array

struct {std::vector< >; std::vector< >; std::vector< >; std::vector< >;}

T matrix[4][N];

Matrix and Vectors

�34

 constexpr uint32_t M=6, N=10000;
#ifdef USE_CPP
 std::cout << "using c++ vector and arrays" << std::endl;
 std::array<std::vector<float>,M> a{std::vector<float>(N),std::vector<float>(N),std::vector<float>(N),
 std::vector<float>(N),std::vector<float>(N),std::vector<float>(N)
 };
 std::vector<std::array<float,M>> b(N);

 std::array<float,M> v;
 std::vector<float> w(N);

#else
 std::cout << "using C arrays" << std::endl;
 float a[M][N];
 float b[N][M];

 float v[M];
 float w[N];
#endif
 std::cout << "a["<<M<<"]["<<N<<"] " << &a[0][0] - &a[0][1] << ' ' << &a[0][0] - &a[1][0] << std::endl;
 std::cout << "b["<<N<<"]["<<M<<"] " << &b[0][0] - &b[0][1] << ' ' << &b[0][0] - &b[1][0] << std::endl;

Iterating…

�35

for (uint32_t j=0; j<N; ++j)
 for (uint32_t i=0; i<M; ++i) a[i][j] *= v[i];

 for (uint32_t i=0; i<M; ++i)
 for (uint32_t j=0; j<N; ++j) a[i][j] *= v[i];

a[i][j] ==>> b[j][i] v[i] ==> w[j]

8 variants in total…

let’s time them!
(mind compiler’s smart optimization)

Graphics Toolkits

Wrapping Up
The CPU – memory performance difference has profound
impact.

Operating systems create illusion of one flat virtual address space. In
reality the virtual memory is divided into pages, and pages are mapped
to physical memory. Performance critical application must account for
this in their design for both data and code management.
A process =~ file-backed page mappings for code and read-only data
plus anonymous page mappings for stack, heap and global data.
Creating many memory regions, for example by loading many shared
libraries, harms performance because good performance requires static
page working set which fits in TLB. Frequent page table changes are
costly, some operations require a system-wide stall to synchronise the
memory views of all the processors.
Shared memory is created by pointing pages tables of several processes
to the same physical memory pages. Shared memory is common place,
and there are numerous convenient ways to create sharing.

�36

Graphics Toolkits

Exotic Efficiency Issues
Applications may need to become NUMA aware.

May have to if on NUMA hardware, and either make significant use of
concurrency and shared memory (multi-threading or multi-processing); or
need more memory than a single physical node has. Read up on numactl.

Poor cache use, not getting enough out of prefetching hardware.

Make sure you use SoA/AoS data structures, then see the other sessions
this week on cache awareness, proper strides, alignment, collision
avoidance, SIMD, and which tools to use identify problems and possible
solutions.

Multi-threaded systems may suffer from cache line contention for heavily
accessed data (e.g. locks). Lots of research out there; typical solution is
finer grained locks, or eliminating locking using e.g. read-copy-update
(RCU). Use multithread aware allocators (like jemalloc , TCmalloc).

Killed by large page tables or TLBs? Look into using huge pages.
�37

Graphics Toolkits

Summary
Memory management is expensive

Real-world limitations of CPUs and programming languages make memory
management a significant factor in overall performance. The solution will vary
with technical evolution. If you missed everything else, remember this: get the
latency down. May mean you have to design to use hardware-aware AoS/SoA
data structures.

No silver bullet

There’s no silver bullet for making your applications scream. For top
performance you have to invest in real understanding and custom application-
specific solutions. Beware memory churn in particular.

Know your tools

There are tools out there which will reduce the mysteries a lot. Now we will
combine several of them for more serious exercises!

�38

�39

Old "arcade" games did not have enough raw CPU power to copy memory around,
nor enough memory to store whole levels as big images images. They relied on
the ability of the (graphics) hardware to "compose" scan-lines from predefined
tiles, superimposing the result with sprites(e.g. the player) images. Tiles and

sprites were actually sitting at fixed locations.

For the child nerd in all of us...

�40

https://www.youtube.com/watch?v=mxfmxi-boyo

The video is generated (in realtime) with a 177KB
executable on 2007 hardware

For the teenage nerd inside all of us...

�41

https://www.youtube.com/watch?v=mxfmxi-boyo

