
Parallelism beyond the node

Felice Pantaleo
CERN Experimental Physics Department

felice@cern.ch

2

Real-time feedback

● click here
● Typos, confused explanations, bad examples
● This is very important to ensure the best teaching

standards!

2

https://docs.google.com/document/d/1qrhT3JoDezhlZNYrwClh_3k-yB-q_Hfo0quaKPBTZkU/edit?usp=sharing

3

Supercomputers
Sometimes:

● You are willing to sacrifice some efficiency for a faster solution
● After a certain amount of time, your solution becomes useless

(e.g. climatology)
● The amount of data and parallelism is too large for a single

machine (cosmology, oil reservoir)
● It is too dangerous or too expensive to run an experiment, and

simulating it requires huge amount of resources (weapons
simulation for defense, fault simulations)

● Data are becoming more complex or simply more <any
attribute>

3

4

Efficiency loss? What are you talking
about?
● The latency of the DRAM can be measured in tens of

nanoseconds
● Sending a byte to a directly connected computer can

take 2-3 orders of magnitude longer than DRAM,
depending on the interconnect technology

● If you have to use Message Passing, try hard to
minimize communication

MPI Basics

6

MPI

● MPI is a standard : http://www.mpi-forum.org/
– Defines API for C, C++, Fortran77, Fortran90

● library with diverse functionalities:
– Communication primitives (blocking, non-blocking)
– Parallel I/O
– RMA
– neighborhood collectives

7

MPI

● A single program is executed with multiple instances,
processes, on the same or different nodes

● These instances communicate via library calls for:
– initialize, finalize, manage working groups/identifiers
– direct point-to-point communication between two

processes
– collective communication

8

Processes

● Each process running its own instance of the program
has access exclusively to its own data

● Two processes communicate by exchanging messages
● Processes have identifiers
● Function calls are used to send data from one process

to another

9

Processes

Process 1
● a=5
● Send(a,2)

Process 2

10

Processes

Process 1
● a=5
● Send(a,2)

Process 2
● Recv(b,1)
● b++

11

Processes

Process 1
● a=5
● Send(a,2)

Process 2
● Recv(b,1)
● b++

b is now 6

12

Single Program on Multiple Data

Process 1
● if pid==1:
● a=5
● Send(a,2)
● else:
● Recv(b,1)
● b++

Process 2
● if pid==1:
● a=5
● Send(a,2)
● else:
● Recv(b,1)
● b++

13

SPMD

● Every process runs the same program
● Each process has a unique identifier and runs the

version of the program with that particular identifier
● Private data
● You usually run one process per socket/core depending

on the parallelization strategy

14

Hello World
#include <mpi.h>

#include <iostream>

int main(int argc, char** argv) {

 MPI_Init(nullptr, nullptr);

 // Get the number of processes

 int world_size;

 MPI_Comm_size(MPI_COMM_WORLD, &world_size);

 // Get the rank of the process

 int rank;

 MPI_Comm_rank(MPI_COMM_WORLD, &rank);

 // Get the name of the processor

 char processor_name[MPI_MAX_PROCESSOR_NAME];

 int name_len;

 MPI_Get_processor_name(processor_name, &name_len);

 std::cout << "Hello world from processor " << processor_name << " rank " << rank <<
" of " << world_size << std::endl;

 MPI_Finalize();

}

15

Hello World
~ mpic++ mpi_hello_world.cpp -o mpi_hello_world

~ mpirun -n 16 ./mpi_hello_world

Hello world from processor hpc-200-06-07.cr.cnaf.infn.it rank 15 of 16

Hello world from processor hpc-200-06-07.cr.cnaf.infn.it rank 0 of 16

Hello world from processor hpc-200-06-07.cr.cnaf.infn.it rank 6 of 16

Hello world from processor hpc-200-06-07.cr.cnaf.infn.it rank 1 of 16

Hello world from processor hpc-200-06-07.cr.cnaf.infn.it rank 4 of 16

Hello world from processor hpc-200-06-07.cr.cnaf.infn.it rank 5 of 16

Hello world from processor hpc-200-06-07.cr.cnaf.infn.it rank 7 of 16

Hello world from processor hpc-200-06-07.cr.cnaf.infn.it rank 10 of 16

Hello world from processor hpc-200-06-07.cr.cnaf.infn.it rank 11 of 16

Hello world from processor hpc-200-06-07.cr.cnaf.infn.it rank 12 of 16

Hello world from processor hpc-200-06-07.cr.cnaf.infn.it rank 13 of 16

Hello world from processor hpc-200-06-07.cr.cnaf.infn.it rank 14 of 16

Hello world from processor hpc-200-06-07.cr.cnaf.infn.it rank 2 of 16

Hello world from processor hpc-200-06-07.cr.cnaf.infn.it rank 3 of 16

Hello world from processor hpc-200-06-07.cr.cnaf.infn.it rank 8 of 16

Hello world from processor hpc-200-06-07.cr.cnaf.infn.it rank 9 of 16

16

Exercise MPI Hello World

● Try it

Point-to-Point Communication

18

Messages

● In general, in order to be able to communicate using
messages you need to fill in a header and a payload

● In MPI the header includes:
– the id of the sender and receiver
– the tag: the "subject" of the message
– the datatype of the content
– the number of elements of that datatype
– the position of the first element to send/receive

19

Messages

● If the sender waits for the message to be received, the
communication is synchronous

● An asynchronous send returns immediately after the
message has been sent

● Receiving is usually synchronous
● Messages have to match, otherwise deadlocks can

occur

20

Data types
MPI datatype C equivalent

MPI_SHORT short int

MPI_INT int

MPI_LONG long int

MPI_LONG_LONG long long int

MPI_UNSIGNED_CHAR unsigned char

MPI_UNSIGNED_SHORT unsigned short int

MPI_UNSIGNED unsigned int

MPI_UNSIGNED_LONG unsigned long int

MPI_UNSIGNED_LONG_LONG unsigned long long int

MPI_FLOAT float

MPI_DOUBLE double

MPI_LONG_DOUBLE long double

MPI_BYTE char

21

System buffer
● A send operation occurs 5 seconds before the receive is ready - where is the

message while the receive is pending?
● Opaque to the programmer and managed entirely by the MPI library
● Able to exist on the sending side, the receiving side, or both
● Allows asynchronous operations

22

Blocking and non blocking
communication

x = 0

MPI_SSend(&x...)

..other work to do..

x = 0

MPI_ISend(&x..., req)

..other work to do..

MPI_Wait(...,req)

What's the difference?

23

Send a message! Example

 #include "mpi.h"

 #include <stdio.h>

 main(int argc, char *argv[]) {

 int numtasks, rank, dest, source, rc, count,
tag=1;

 char inmsg, outmsg='x';

 MPI_Status Stat; // required variable for
receive routines

 MPI_Init(&argc,&argv);

 MPI_Comm_size(MPI_COMM_WORLD, &numtasks);

 MPI_Comm_rank(MPI_COMM_WORLD, &rank);

24

Send a message! Example

// task 0 sends to task 1 and waits to receive a return message

 if (rank == 0) {

 dest = 1;

 MPI_SSend(&outmsg, 1, MPI_CHAR, dest, tag, MPI_COMM_WORLD);

 }

// task 1 waits for task 0 message then returns a message

 else if (rank == 1) {

 source = 0;

 MPI_Recv(&inmsg, 1, MPI_CHAR, source, tag, MPI_COMM_WORLD,
&Stat);

 }

 MPI_Finalize();

 }

25

Your turn now: Ping Pong

● Modify the previous example to send and receive a message:
– rank 0 sends a message to rank 1.
– once received, rank 1 sends the same message to rank 0

● Measure time between a send and receive (ping)
● Try to run it on many iterations such that the total time is

between 1s and 10s
● Measure bandwidth and investigate how it changes with a

varying message size
● time can be measured with:
double MPI_Wtime()

26

Blocking ping pong exercise
 #include "mpi.h"

 #include <stdio.h>

 main(int argc, char *argv[]) {

 int numtasks, rank, dest, source, rc, count, tag=1;

 char inmsg, outmsg='x';

 MPI_Status Stat; // required variable for receive routines

 MPI_Init(&argc,&argv);

 MPI_Comm_size(MPI_COMM_WORLD, &numtasks);

 MPI_Comm_rank(MPI_COMM_WORLD, &rank);

 // task 0 sends to task 1 and waits to receive a return message

 if (rank == 0) {

 dest = 1;

 source = 1;

 MPI_SSend(&outmsg, 1, MPI_CHAR, dest, tag, MPI_COMM_WORLD);

 MPI_Recv(&inmsg, 1, MPI_CHAR, source, tag, MPI_COMM_WORLD, &Stat);

 }

27

Blocking ping pong exercise

 // task 1 waits for task 0 message then returns a message

 else if (rank == 1) {

 dest = 0;

 source = 0;

 MPI_Recv(&inmsg, 1, MPI_CHAR, source, tag, MPI_COMM_WORLD, &Stat);

 MPI_SSend(&outmsg, 1, MPI_CHAR, dest, tag, MPI_COMM_WORLD);

 }

 // query receive Stat variable and print message details

 MPI_Get_count(&Stat, MPI_CHAR, &count);

 printf("Task %d: Received %d char(s) from task %d with tag %d \n",

 rank, count, Stat.MPI_SOURCE, Stat.MPI_TAG);

 MPI_Finalize();

 }

28

The blocking ring exercise

● Write an MPI program in which each process sends its
rankId to its neighbors rankId+1 and rankId-1

● Close the ring by making the last rankId
communicate with the rankId=0

● Measure the time for 1000 iterations and a variable
number of processes

29

Non-Blocking ring exercise
 #include "mpi.h"

 #include <stdio.h>

 main(int argc, char *argv[]) {

 int numtasks, rank, next, prev, buf[2], tag1=1, tag2=2;

 constexpr int nRequests = 4;

 MPI_Request reqs[nRequests]; // required variable for non-blocking calls

 MPI_Status stats[nRequests]; // required variable for Waitall routine

 MPI_Init(&argc,&argv);

 MPI_Comm_size(MPI_COMM_WORLD, &numtasks);

 MPI_Comm_rank(MPI_COMM_WORLD, &rank);

 // determine left and right neighbors

 prev = rank-1;

 next = rank+1;

 if (rank == 0) prev = numtasks - 1;

 if (rank == (numtasks - 1)) next = 0;

30

Non-Blocking ring exercise

 // post non-blocking receives and sends for neighbors

 MPI_Irecv(&buf[0], 1, MPI_INT, prev, tag1, MPI_COMM_WORLD, &reqs[0]);

 MPI_Irecv(&buf[1], 1, MPI_INT, next, tag2, MPI_COMM_WORLD, &reqs[1]);

 MPI_Isend(&rank, 1, MPI_INT, prev, tag2, MPI_COMM_WORLD, &reqs[2]);

 MPI_Isend(&rank, 1, MPI_INT, next, tag1, MPI_COMM_WORLD, &reqs[3]);

 // do some work while sends/receives progress in background

 // wait for all non-blocking operations to complete

 // MPI_Waitall (count,&array_of_requests,&array_of_statuses)

 MPI_Waitall(nRequests, reqs, stats);

 // continue - do more work

 MPI_Finalize();

 }

31

The non-blocking ring exercise

● Modify the previous program in order to use non-
blocking communication

● Measure the time for 1000 iterations and a variable
number of processes

● Do you notice any speed-up?

32

Pi

We know that:

– The integral can be
approximated as the sum
of the rectangles:

33

Numerical integration

constexpr int num_steps = 1<<20;

double pi = 0.;

constexpr double step = 1.0/(double) num_steps;

double sum = 0.;

for (int i=0; i< num_steps; i++){

 auto x = (i+0.5)*step;

 sum = sum + 4.0/(1.0+x*x);

}

pi = step * sum;

std::cout << "result: " << std::setprecision (15) <<
pi << std::endl;

●

34

Numerical integration

● Modify your Hello World program so that each process
independently computes the value of π and prints it to the
screen.

● Choose a number of steps per process and try to parallelize
it using MPI

● Every process sends its partial result to rank 0
● rank 0 executes the final sum
● Make sure everything works even if the number of steps is

not multiple of the number of processes
● Compare timing with same number of threads as processes

in tbb/std::threads

35

Probe before receiving

If you don't want to allocate the maximum possible
amount of memory for the receiving buffer you can use
MPI_Probe
MPI_Probe(int source, int tag, MPI_Comm comm, MPI_Status* status)

It will ask for the properties of the incoming message without
receiving it:
MPI_Probe(0, 0, MPI_COMM_WORLD, &status);

MPI_Get_count(&status, MPI_INT, &number_amount);

int* number_buf = (int*)malloc(sizeof(int) * number_amount);

MPI_Recv(number_buf, number_amount, MPI_INT, 0, 0,

 MPI_COMM_WORLD, MPI_STATUS_IGNORE);

Collective Communication

37

Collective communication/synchronization

● A message can be sent to/received from a group of
processes
– Broadcast, scatter, gather, reduce

● A group of processes can synchronize
– Achieved by means of barriers
– A process in the group has to wait for all the other processes in

the group before it can start executing the next line of code
– Usually needed for timing, not for correctness

● Use collective communication when possible
– they are implemented more efficiently than the sum of their

point-to-point equivalent calls

38

Barrier

MPI_Barrier(MPI_Comm communicator)

39

Barrier

MPI_Barrier(MPI_Comm communicator)

40

Barrier

MPI_Barrier(MPI_Comm communicator)

41

Barrier

MPI_Barrier(MPI_Comm communicator)

42

Barrier

MPI_Barrier(MPI_Comm communicator)

43

Collective communication

44

Collective communication

MPI_Bcast(
 void* data,
 int count,
 MPI_Datatype datatype,
 int root,
 MPI_Comm communicator)

MPI_Scatter(
 void* send_data,
 int send_count,
 MPI_Datatype send_datatype,
 void* recv_data,
 int recv_count,
 MPI_Datatype recv_datatype,
 int root,
 MPI_Comm communicator)

MPI_Gather(
 void* send_data,
 int send_count,
 MPI_Datatype send_datatype,
 void* recv_data,
 int recv_count,
 MPI_Datatype recv_datatype,
 int root,
 MPI_Comm communicator)

MPI_Reduce(
 void* send_data,
 void* recv_data,
 int count,
 MPI_Datatype datatype,
 MPI_Op op,
 int root,
 MPI_Comm communicator)

45

Reduce operations

● MPI_MAX - Returns the maximum element.
● MPI_MIN - Returns the minimum element.
● MPI_SUM - Sums the elements.
● MPI_PROD - Multiplies all elements.
● MPI_LAND - Performs a logical and across the elements.
● MPI_LOR - Performs a logical or across the elements.
● MPI_BAND - Performs a bitwise and across the bits of the elements.
● MPI_BOR - Performs a bitwise or across the bits of the elements.
● MPI_MAXLOC - Returns the maximum value and the rank of the process that

owns it.
● MPI_MINLOC - Returns the minimum value and the rank of the process that

owns it.

46

Exercise Pi

● Modify the numerical integration exercise to use the
collective reduction

47

Exercise Game of Life
● Cellular Automaton
● Any live cell with fewer than

two live neighbours dies
● Any live cell with more than

three live neighbours dies
● Any live cell with two or

three live neighbours lives,
unchanged, to the next
generation.

● Any dead cell with exactly
three live neighbours will
come to life.

● Borders should be treated as
portals

48

Final MPI exercise - Game of Life

● p processors
● board NxM booleans (x and o)
● initially the master sends a piece of the board to each

processor
● each processor computes its CA and exchanges borders

information with neighboring processors
● at each m steps, the master gathers the entire board

and prints it on screen (x and o)

