MICRO & NANODOSIMETRY AT LNL

Valeria Conte INFN-Laboratori Nazionali di Legnaro

82 centres worldwide – 25000 patients treated last year 2

82 centres worldwide – 25000 patients treated last year 2

DENSE TRACKS ARE MORE EFFECTIVE THAN SPARSE TRACKS

The FWT LET-1/2 TEPC

The LNL MINI-TEPC

external diam. 2.7 mm the same of 8 French cannula

inside diam. 0.9 mm

The LNL MINI-TEPC

The LNL MINI-TEPC

MICRODOSIMETRY

Macroscopic counters mimic the µm SIZE by using tissue-equivalent gas as the detection medium.

MICRODOSIMETRY

Macroscopic counters mimic the µm SIZE by using tissue-equivalent gas as the detection medium.

definition of quantities

lineal energy $y = \frac{\varepsilon}{\overline{l}}$ $[y] = \frac{keV}{\mu m}$

f(y) frequency probability density of yd(y) dose probability density of y

The p(65)+Be therapeutic neutron beam of Nice

FROM RESEARCH TO CLINICS

The biological response function r(y)

The biological response function is not universal

NANODOSIMETRY

A single ionizing particle crosses a target volume V

And the number ν of ionizations inside V is counted

 $P(\mathbf{v}|\mathbf{Q})$ represents the probability of measuring \mathbf{v} ionizations

 $M_1(Q)$ represents the mean ionization yield

 $F_n(Q)$ represents the probability of measuring at least n ionizations

THREE NANODOSIMETERS nano-volumes of different size

NANODOSIMETRY of 8 AMeV particles with STARTRACK

NANODOSIMETRY

$\sigma_{biol} = K_n \times F_n$

cell damage complexity

radio-SENSITIVE ionization density $\boldsymbol{\sigma} = \mathrm{K}_1 \boldsymbol{F}_1$

radio-RESISTANT

$$\boldsymbol{\sigma}_{5\%} = \mathrm{K}_2 \, \boldsymbol{F}_2$$

$$\sigma_{\alpha} = K_3 F_3$$

n

MICRO & NANODOSIMETRY

Purpose: not the unlimited generation of data but their deliberate reduction to the most essential parameters

INACTIVATION OF HSG CELLS

Inactivation of aerobic and hypoxic cells from three different cell lines by accelerated (3)He-, (12)C- and (20)Ne-ion beams Furusawa Y, Fukutsu K, Aoki M, Itsukaichi H, Eguchi-Kasai K, Ohara H, Yatagai F, Kanai T, Ando K. Radiat Res. 2000 Nov;154(5):485-96.

THE LINK TO RADIOBIOLOGY: RADIORESISTANT CELLS

V79: HIGH REPAIR CAPACITY

Inactivation cross sections at high doses 5% survival

Inactivation cross sections al low doses 1% survival

 F_3 complex DSB σ_{α}

XRS5 CELLS irradiated by 12C ions

XRS5: LOW REPAIR CAPACITY

MICRODOSIMETRY

Purpose: not the unlimited generation of data but their deliberate reduction to the most essential parameters

FIG. 1. Energy density as a function of the mass for which energy density is determined. The horizontal line covers the region in which the absorbed dose can be established in a single measurement. The shaded portion represents the range where statistical fluctuations are important.

Microdosimetry in sub-micrometer dimensions?

H.I. Amols et al., *RPD 31 (1990)*

FROM PHYSICS TO RADIOBIOLOGY

INACTIVATION CROSS SECTIONS

$$\sigma_{x} = (D_{x}/\Phi_{x}) \times \sqrt{\alpha^{2} - 4\beta \ln(x)}$$

V79 CELLS

$$\sigma_{5\%} = K_2 \times F_2$$
$$K_2 = 64 \ \mu m^2$$

$$\sigma_{\alpha} = K_3 \times F_3$$
$$K_3 = 54 \ \mu m^2$$

XRS5 CELLS

The LNL MINI-TEPC

Fast response High stability High precision positioning High particle's flux capabilities High sensitivity: detects the single ionization Full LET-range (from 0.2 to 5000 keV/µm) in a single measurement