

Luigi Cosentino INFN - LNS

Neutron cross section measurements for astrophysics and applications at nTOF facility@CERN

Luigi Cosentino - Workshop SPES - 29/30 January 2019 - Ferrara

Motivation: Why is a neutron beam facility useful?

Neutron induced reactions are strongly involved in several scientific and technological fields

Nuclear Astrophysics

R&D of new generation nuclear reactors

New therapies in medicine

... and many others

Motivation: Why is a neutron beam facility useful?

Neutron induced reactions are strongly involved in several scientific and technological fields

Nuclear Astrophysics

R&D of new generation nuclear reactors

New therapies in medicine

... and many others

Measurements of accurate neutron cross sections are crucial

High quality neutron sources:

- High luminosity
- Wide energy range

Where?

n_TOF (neutron Time Of Flight) at CERN

(On a proposal of Carlo Rubbia. Operating since 2001)

- Synthesis of the elements in the Universe
- Nuclear Power Reactors
- Neutron Therapy

- Nuclear Power Reactors
- Neutron Therapy

Nucleosyntesis in the Universe

The stellar nucleosynthesis

s-process (slow neutron capture process):
 Capture times long relative to decay time neutron capture timescale: 1 – 10 years
 Involves mostly stable isotopes
 N_n = 10⁸ n/cm³, kT = 0.3 – 300 keV
 r-process (rapid neutron capture process):
 Capture times short relative to decay times neutron capture timescale: 1 – 10 years
 Produces unstable isotopes (neutron-rich)
 N_n = 10⁸ n/cm³, kT = 0.3 – 300 keV

 $\sigma_{(n,\gamma)}$ is a key physical quantity.

Need of new and accurate neutron cross-sections to refine the models of stellar nucleosynthesis

The rapid neutron capture process (*r*-process)

Under those extreme neutron-rich conditions, atomic nuclei capture neutrons becoming increasingly heavy, with the reaction path running close to the neutron dripline $\tau_n \ll \tau_b$

Neutron-induced fission *reactions play a fundamental role*

New experimental data on actinides are required to produce more reliable r-process models

- Synthesis of the heavy elements in the Universe
- (Nuclear Power Reactors
- Neutron Therapy

Nuclear Technology for Energy production

(Fission and fusion nuclear reactors)

IAEA estimates an increase of nuclear energy usage between 35% and 90% before 2030

Development of new nuclear technologies

- IV generation fission reactors
- Transmutation of nuclear waste
- Fusion reactors
- Structural materials

Luigi Cosentino - Workshop SPES - 29/30 January 2019 - Ferrara

The development of Gen IV fast reactors requires data on minor actinides

Istituto Nazionale di Fisica Nucleare

Damage on structural materials in fusion reactors

- Activation
- Transmutation
- Gas production due the reactions (n,p), (n,α) on various elements (Fe, V, W, Cr, Mo,...)

Strong impact to limit the lifetime of the reactor components.

Needs of new neutron data

- Synthesis of the heavy elements in the Universe
- Nuclear Power Reactors

Nuclear Medicine: *Boron Neutron Capture Therapy*

¹⁴N(n,p) → main contribution to the dose in healthy tissue. ³⁵Cl(n,p) → relevant in many tissues (brain, skin). ³³S(n,α) → as adjuvant to ¹⁰B.

How to measure accurate neutron cross section?

High quality measurements require neutron beams with:

- High energy resolution
- High neutron flux

Solution: Pulsed neutron beam produced by spallation on a lead target using a high intensity proton beam

Wide energy range neutron beam

n_TOF experiment at CERN

The n_TOF Facility

Proton Synchrotron beam: high energy, high peak current, low duty cycle

Pulsed Proton beam with frequency ≈ 0.8 Hz

7^{10¹²} protons/pulse

~ 300 neutrons/proton!

- E.Chiaveri et al., Nuclear Data Sheets Volume 119, May 2014, Pages 1-4
- F.Gunsing et al., EPJ Web of Conferences 146, 11002 (2017)

The experimental Areas

	EAR1 (since 2001)	EAR2 (since 2014)			
Neutron flux	High (10 ⁶ n/bunch)	Very high (10 ⁸ n/bunch)			
Energy range	Very wide (therm. – GeV)	Wide (therm. – 100 MeV)			
Energy resolution	Very good (10 ⁻⁴)	Good (10 ⁻³)			
	well suitable to study resonances	short lived radioactive isotopes, low cross sections			

M.Barbagallo et al., Eur. Phys. J. A 49, (2013) 1-11 M.Sabaté-Gilarte et al., Eur. Phys. J. A 53 (2017) 53: 210

The experimental Areas

	EAR1 (since 2001)	EAR2 (since 2014)			
Neutron flux	High (10 ⁶ n/bunch)	Very high (10 ⁸ n/bunch)			
Energy range	Very wide (therm. – GeV)	Wide (therm. – 100 MeV)			
Energy resolution	Very good (10 ⁻⁴)	Good (10 ⁻³)			
	well suitable to study resonances	short lived radioactive isotopes, low cross sections			

The experimental Areas

Instrumentation: neutron Flux measurement

SIlicon MONitor for neutron flux measurement

Instrumentation: neutron beam profiler

5cm x 5cm double-sided strip SiLiF detector 25 strips, 2mm x 5cm

Comparison to other facilities

Comparison to other facilities

The experimental apparatus

Charged particles (n,cp)

Detectors for neutron capture

C₆D₆ (Deuterated benzene liquid scintillator)

low neutron sensitivity device

Total Absorption Calorimeter (TAC)

- ✓ 4π with high efficiency (40 BaF₂ encapsulated in carbon fibred charged with ¹⁰B). Neutron sensitivity < 1%
- ✓ high background rejection

Detectors for fission reactions

Fission Chambers

- Fission fragments detection also in coincidence
- Sensitivity up to 1GeV (with PPAC)
- Low sensitivity to $\boldsymbol{\gamma}$

Detectors for fission reactions and light charged particles (p,t,α...)

MicroMegas

- High Signal to noise ratio

Silicon detectors (PAD, strip)

- Telescopes ΔE-E
- In sandwich mode along the beam line (low neutron sensitivity)

Measurements

Capture (n,γ)

- ^{24,25,26}Mg
- ^{54,56,57}Fe
- ^{58,62,63}Ni
- ^{69,71}Ga
- ^{70,72,74,76}Ge
- 90,91,92, <mark>93</mark>,94,96**Zr**
- ¹³⁹La
- ¹⁴⁰Ce
- ¹⁴⁷Pm
- ¹⁵¹Sm
- ^{154,155,157}Gd

- ¹⁷¹Tm
- ²³²Th
- ^{186,187,188}Os
- 203,204**TI**
- ^{204,206,207,208}Pb
- ²⁰⁹Bi

•

- 233,234
- ²³⁷Np, ²⁴⁰Pu
- ²⁴³Am
 - ^{244,246}Cm

Fission (n,f) 233,234,235,236,238U 232Th ²⁰⁹Bi ²³⁷Np 241,243Am, 245Cm natPb

> 150 papers, including :

- 42 Physical Review C
- **12** Nuclear Data Sheets
- **10** The European Physical Journal A
- 4 Physical Review Letters

> 40 PhD Thesis

• • •

Big Bang Nucleosynthesis:

The Cosmological Lithium Problem

(feasible thanks to availability of a high flux in EAR2)

Extremely challenging measurement: (huge target activity, silicon detectors in the neutron beam)

 Telescope 20 + 300 micron. 16 + 16 strips

 5 cm
 p
 7Be

 300 μm
 20 μm
 7Be High Purity Sample

 7Be(n,p)
 Activity
 1.1 GBq

 Radius
 2.5 mm
 9

Luigi Cosentino - Workshop SPES - 29/30 January 2019 - Ferrara

A recent experiment related to the s-process

Very low cross sections (1° bottleneck of s process N=50)

⁸⁹Y: 13 - 21 mb @ 30 keV
⁸⁸Sr: 5 - 9 mb @ 30 keV

Discrepancies in literature for the **MACS**.

Large deviation with respect to literature have been observed, specially for ⁸⁸Sr.

Analysis is in progress.

Measurement related to applications

^{155,157}Gd(n,γ) burnable neutron poison

To increase the efficiency in a fission reactor, the amount of ²³⁵U must be enhanced. It may imply safety issues at the reactor start. This effect can be compensated by introducing neutron poison.

New measurement for En < 1 keV

M. Mastromarco, A. Manna, et al., Eur. Phys. J. A (2019) 55: 9.

Cross section of ²³⁵U(n,f) @ 10-30 keV

The 235 U(n,f) cross section respect the reference reactions 6 Li(n,t) and 10 B(n, α).

Silicon detectors 5x5 cm², 200µm, along the beam line, to detect fission fragments emitted at forward and backward angles

Neutron data libraries overestimate the ²³⁵U(n,f) cross section

Cross section of ²³⁵U(n,f) > 10 MeV

²³⁵U(n,f) relative to (n,p) measured on 2018

N_TOF towards the future: Phase 4 A new spallation target (2020 – 2030)

Increase x2 of the neutron flux above 10 keV (EAR2).

Well suitable for short-lived radioactive isotopes, in particular if available in small amounts (e.g., by implantation of radioactive beams).

Some measurements to be planned for Phase 4

(n,f) of isotopic chains to provide strong constraints for the optimization of fission models:

²³⁸Pu - ²⁴⁴Pu (some already measured)
²⁴³Cm - ²⁴⁸Cm (²⁴⁵Cm already measured)
²⁴⁹Cf - ²⁵²Cf

Review article in preparation to be published in EPJA: N.Colonna et al., *The fission experimental program at the CERN nTOF facility: status and perspectives.*

			Cf249 351 y 9/2- α,sf	Cf250 13.08 y 0+ α,sf	Cf251 898 y 1/2+ α	Cf252 2.645 y 0+ α,sf
	Cm243	3 Cm244	Cm245	Cm246	Cm247	Cm248
	29.1 y	18.10 y	8500 y	4730 y	1.56E+7 y	3.40E+5 y
	5/2+	0+	7/2+	0+	9/2-	0+
	EC,α,sf,	α,sf	α,sf	α,sf	α	α,sf
Pu238	Pu239	Pu240	Pu241	Pu242		Pu244
87.7 y	24110 y	6563 y	14.35 y	3.733E+5 y		8.08E+7 y
0+	1/2+	0+	5/2+	0+		0+
α,sf	α,sf	α,sf	β·,α,sf,	α,sf		α,β-β-,sf,

Conclusion and perspectives

□ At present, n_TOF is one of the best facilities in the world for challenging measurements requiring high flux, wide energy range, low background and good resolution.

□ There is a need for several data on neutron-induced reactions, in particular to:

- refine the models of s and r nucleosynthesis processes with new neutron induced reactions data (e.g. fission data for recycling in r-process)
- neutron therapy
- fusion reactors (ITER and DEMO)

A large number of neutron induced reactions are needed for the design of fusion reactors, in particular for problems related to the lifetime of structural materials (e.g. embrittlement due to gas production). Many of them can be performed in EAR2.

Phase 4 will starts on 2021 with the new spallation target. The planned challenging measurement will require new detectors, to extend the present energy range to 14 MeV for (n,cp) reactions. R&D activity is in progress.

Thank you for your attention

Luigi Cosentino - Workshop SPES - 29/30 January 2019 - Ferrara

Backup slides

Big Bang Nucleosynthesis: *The Cosmological Lithium Problem*

Cosmological Lithium Problem

Facility	Frequency (Hz)	Path length (m)	neutron/pulse
RPI, USA	500	15 - 250	3.6 [.] 10 ⁹
GELINA, Belgium	40 - 800	5 - 400	4.3 [.] 10 ¹⁰
ORELA, Oak Ridge, USA	12 - 1000	9 - 200	1.1012
LANL, Los Alamos, USA	20	7 - 60	7 [.] 10 ¹⁴
n TOF CERN	0.4	20 - 185	2 [.] 10 ¹⁵