SPES @ Ferrara, Italy, 30/01/2019

Compact Accelerator-driven Neutron Sources (CANSs) and their applications in Japan

Yoshiaki Kiyanagi

Designated Professor of Nagoya University, Japan President of Japanese Society for Neutron Science

Honorary Professor of Hokkaido University Honorary Professor of Xian Jiaotong University

Self-Introduction

Hokkaido University Neutron Source, HUNS 1kW

Most efficient cold neutron moderator Pulsed neutron imaging Soft error test

J-PARC(Tokai village)

1MW

Nagoya University Neutron Source, NUANS 42kW Engineering study of BNCT

J-PARC cold neutron moderator Nuclear data beam line, ANNRI Imaging beam line, RADEN

Outline

Introduction of neutron applications at compact accelerator-driven neutron sources.

1. Accelerator-driven neutron sources in the world and Japan

- 2. Neutron scattering and imaging
- **3.** Soft error acceleration test
- 4. Boron Neutron Capture Therapy

5. Summary

1. Accelerator driven neutron sources in the world

Accelerator-driven Neutron Sources in Japan

2. Neutron scattering and imaging

Layered Structure of Neutron Sources

Medium		Large	High resolution, High intensity, General research target, Long term, etc.	al
		Medium res Challengeat		
Compact	Low r exper	esolution, Eas iment, Flexib	sy access, Various samples, Challengeable, T le, Various experiments, <mark>Sustained educatic</mark>	Frial or idea

A compact source (CANS) is nearer to users than a large facility geographically and also emotionally, which is useful to expand the number of users, and it can educate and train students and users. It may open new area of applications.

The CANS can perform 'Scattering experiments', 'Imaging', 'soft error', 'BNCT' etc.

Neutron sources for beam experiments

HUNS(35MeV, 30μA) 10^{3~}10⁴n/sec/cm² @7m Cold-fast neutrons

Aomori Prefecture Quantum Science Center(20MeV, 50µA) 6.1X10⁵n/sec/cm² Thermal

~10⁸n/sec/cm²

JRR-3 (Reactor) 2020 TNRF: ~10⁸n/sec/cm² Thermal neutron <u>CNRF</u>: ~10⁷n/sec/cm² Cold neutron

Fluxes at imaging lines

RANS(7MeV, 100µA) ~fewX10⁴n/sec/cm² @5m Thermal neutron KUANS (3.5MeV, 100μA) ~5x10²n/sec/cm²

@5m@0.35kW Thermal neutron

SHI-ATEX (18MeV, **20µA)** ~2x10⁵n/sec/cm² Thermal

KUR (Reactor): Thermal **KURNS-LINAC** E2: ~4x10⁵n/sec/cm²@5MW B4: ~10^{6~7}n/sec/cm²@5MW

(40MeV, 100mA) ~10³n/sec/cm²

Nagova Nuans(2.8MeV,15mA) ~10⁵n/sec/cm² Thermal

A) Imaging: Corrosion and water movement

CANS makes it possible to analyze quantitatively water content under paint of a steel and a special alloy, and it accelerates the research on antirust steels.

Courtesy of Dr. Yoshie Otake

"Atsushi Taketani, et al : ISIJ International Vol. 57, No. 1 (2017)

B) Texture measurement by diffraction

2) HUNS (Hokkaido University Neutron Source)

A) Lab (SAXS) and Lab(SANS) complementary use

iANS, intermediate-angle neutron scattering instrument

T. ISHIDA, M. OHNUMA, B. SEONG and M. FURUSAKA, ISIJ International, Vol. 57 (2017), No. 10, pp. 1831–1837

B) Pulsed neutron imaging

b) Spatial distribution of layer space in Li-ion battery

Bragg-edge spectra depending on charge level

T Kamiyama, Y Narita, H Sato, M Ohnuma, Y Kiyanagi, Physics Procedia 88 (2017) 27 – 33. 14

heterogeneous distribution in mm order.

Imaging area ~ 9 cm × 9 cm

d) Magnetic field distribution @J-PARC RADEN (Big Facility) Electricity consumption of magnetic devices like motor is very large, about 50% of total consumption. 1% loss reduction saves a 1-million-kW power plant.

Motor manufacturing process

Loss is a max of ten times higher than an expectation value of design

In order to reflect the real performance to the design,

it is necessary to use a method that can observe the magnetic field directly.

Neutron has spin magnetic moment

Neutron spin precesses in a magnetic field. = Spin state change

Magnetic field imaging using neutron high penetration power and magnetic interaction

Polarized neutron imaging for magnetic field obsevation

Magnetic field of a model motor

Direct comparison of a real field with a design field

3. Soft error acceleration test

NTT Network Service Systems Laboratories *NTT (Nippon Telegraph and Telephone Corporation) Hokkaido university **Nagoya University**

Higher integration causes higher frequency of the soft error.

THEFT

THEFT

H. Iwashita, H. Sato, H. Arai, T. Kotanigawa, K. Kino, T. Kamiyama, F. Hiraga, K. Koda, M. Furusaka and Y. Kiyanagi, IEEE Transactions on Nuclear Science, Vol 64, pp.689-696, 2017.

Soft error test using HUNS

We designed the neutron source for the soft error test and made it.

Soft errors occur in a few or ten minutes, and HUNS was proved to be effective.

*:S.abe and Y.Watanabe, IEEE Transaction on Nuclear Science, 61, 3519-3526(2014) Copyright©2016 NTT corp. All Rights Reserved.

*SEU (Single Event Upset)

Standardization for soft error test was completed at ITU according to proposals by NTT

Recommendation	Title	Status
K.124	Overview of particle radiation effects on telecommunications systems	Approved in 2016
K.soft_des	Design methodologies for telecommunication systems applying soft error measures	Approved in 2017
K.soft_test	Soft error test method for telecommunication equipment	Approved in 2017
K.soft_mes	Quality estimation methods and application guidelines for mitigation measures based on particle radiation tests	Approved in 2018

Procedure for installation of soft error measures in development of equipment

Commercial service of acceleration test of the soft error New step for industrial application

Proton energy : 18MeV Max current: 20µA From 19 Dec. 2016

NTT

Nagoya University Hokkaido University SHI-ATEX *NTT Advance Technology (Responsible for the tests)

Cyclotron-driven neutron source at SHI-ATEX

Cf. Acceleration coefficient of compact neutron sources

We evaluated acceleration coefficients for various devices at different facilities. Acceleration coefficient= (Soft error rate at CANS) / (Soft error rate in natural condition) Natural condition: Soft error rate at LANSCE

JRC measurements are proceeded by collaboration with JRC group and Dr. Mastinu et al. at LNL.

We need acceleration coefficients for future new devices.

SEU cross section is necessary to evaluate the coefficient more effectively.

Main reactions contributed to SEU.

Reaction with Si	$E_{threshold}$
$^{28}Si + n \rightarrow ^{28}Al + p$	3.999[MeV]
$^{28}Si + n \rightarrow ~^{25}Mg + \alpha$	2.749[MeV]
$^{29}Si + n \rightarrow ^{29}Al + p$	3.009[MeV]
$^{29}Si + n \rightarrow ^{26}Mg + \alpha$	0.035[MeV]
$^{30}Si + n \rightarrow ^{30}Al + p$	8.040[MeV]
$^{30}Si + n \rightarrow ^{27}Mg + \alpha$	4.341[MeV]

4. Boron Neutron Capture Therapy (BNCT)

Boron drug is delivered mainly to cancer cells. Thermal neutron (~0.025eV) is absorbed by a boron nuclei and induces a nuclear reaction, ${}^{10}B(n, \alpha){}^{7}Li$. α and Li kill the cancer cell. Cell selective treatment!

http://www.rri.kyoto-u.ac.jp/nct.html

Number of clinical trial and applicable diseases

JRR-4+KUR Total

Reactor BNCT facilities in the world

Based on the Report of BNCT screening working group in Japan

There have been many reactor facilities for BNCT, but many of them were already shutdown, and accelerator-driven neutron sources have been desired.

Accelerator based BNCT facilities in Japan

Kyoto Univ. (Cyclotron / Be BNCT): CBENS

30MeV 1mA Heat removal is easy and blistering is 陽子ビーム avoided due to high energy コリメータ •Residual radioactivity is high. Beターゲット Only this type system Irradiation room was constructed in various hospitals. Irradiation bed Beam shaping assembly 1 m Scanner magnet(x-direction) Scanner magnet(y-direction) 20 mm Magnet 3030 Cyclotoron Steering magnet urrent monitor slit magnet Bending magnet RF applifie Foil stripper

Accelerator based BNCT neutron sources in the world

List of accelerator based BNCT facilities in the world

Facility name	Accelerator	Target	Incident particle, Produced neutron energy (MeV)	Designed current (mA)	Present current status (mA)	Present status
Kyoto University	Cyclotron	Be	P: 30 , N: < 28	1	1	Clinical trial
Minami Tohoku Hospital	Cyclotron	Be	P: 30 , N: < 28	1	1	Clinical trial
Tsukuba University	Linac	Be	P: 8 , N: <6	5	<2	Physical meas.
National Cancer Center	Linac	Solid Li	P: 2.5 , N: < 1	20	12	Physical meas.
Kansai BNCT Medical Center	Cyclotron	Be	P: 30 , N: < 28	1		Commissioning
Edogawa Hospital BNCT Center	Linac	Solid Li	P: 2.5 , N: < 1	20		Commissioning
Nagoya University	Electrostatic	Solid Li	P: 2.8 , N: < 1	15		Commissioning
Budker Institute (Russia)	Electrostatic	Solid Li	P: 2.0 , N: < 1	10	3	Developing
Helsinki University Central						
Hospital (Finland)	Electrostatic	Solid Li	P: 2.6 , N: < 1	30	20	Constructing
SARAF (Israel)	Linac	Liq-Li	P<4, N: < 1	20 (?)	1-2	Developing
CNEA (Argentina)	Electrostatic	Be, ¹³ C	P, d : 1.4 , N: < 6	30	<1	Constructing
Legnaro INFN (Italy)	Linac	Be	P<4, N: < 2	30		Developing
A-BNCT(Korea)	Linac	Be	P: 10 , N:<8	8		Construction
Xiamen BNCT Center	Electrostatic	Solid Li	p: 2.5 , N:<1	10		Developing

Based on the Report of the BNCT screening working group in Japan

New BNCT projects have been proposed in the world and will be proposed furthermore.

5. Summary

CANS is useful.

(Experiments performed at CANS)

JRR-3

KUR

Neutron yield(n/sec)

Thank you for your attention!