

Radioisotope production at LARAMED

GAIA PUPILLO INFN-LNL (LEGNARO, PADUA, ITALY)

Interdisciplinary aspects and applications related to the SPES project Ferrara, 29–30 January 2019

Paolo Favaron¹, Augusto Lombardi¹, Piergiorgio Antonini¹ and Adriano Duatti^{1,4}

SPES/LARAMED INFRASTRUCTURE

SPES project

Nuclear Physics research activities

The LARAMED (net)work

INFN funded/running projects	Project name			
Accelerator-Tc-99m alternative (direct) production route through hospital cyclotrons	APOTEMA (2012–2014) TECHNOSP (2015–2017)		S.C. Don	
CRP on"Alternative, non HEU-based, Tc-99m /Mo-99 supply"	IAEA CRP (2011–2015)	INFN PV	Hospital (VR)	Ferrara University
Alternative Cu-64/Cu-67 production for theranostic application	COME (2016)			(FE)
Alternative Sc-47 production for theranostic application	PASTA (2017–2018)		INFN	St.
CRP on "Radiopharmaceuticals Labelled with New Emerging Radionuclides" Cu-67, Re-186, Sc-47"	IAEA CRP (2016–2019)	INFN PD	LINL	Orsol Hospit (BO)
High Power Target concepts R&D (^{64/67} Cu)	TERABIO (2016-2019)	ARRON	AX	CNR
High intensity vibrational powder plating	E_PLATE (2018-2019)	(Nante Franc	es, e)	(MI)
Multimodal pET/mRi Imaging with Cyclotron- produced Mn-52/51 and stable paramagnetic Mn iSotopes	METRICS (2018-2020)			

Radionuclides of major interest for the LARAMED project

Tc-99mCu-67Sc-47Mn-52Apotema/Techn-OspComePastaMetrics

APOTEMA – CSN5 2012/2014

TECHN_OSP - CSN5 2015/2017

¹⁰⁰Mo(p,2n)^{99m}Tc: Main physical data

Expected Tc-isotopes at EOB:

Isotones	Half_life	Isotones	Half_life
13010005		13010005	
Tc-100	15.46 s	Tc-95m	61 d
Tc-99m	6.0067 h	Tc-95g	20.0 h
Tc-99g	2.111 ·10 ⁵ y	Tc-94m	52.0 m
Tc-98	4.2 ·106y	Tc-94g	293 m
Tc-97m	91.0 d	Tc-93m	43.5 m
Tc-97g	4.21 ·10 ⁶ y	Tc-93g	2.75 h
Tc-96m	51.5 m	Tc-92	4.25 m
Tc-96g	4.28 d	Tc-91g	3.14 m

Irradiation Conditions		
Ep	18-20 MeV	
Irr. Times	3-6 h	
targets	$^{100}Mo(>99\%)$	

J. Esposito, Sci Tech of Nuc Inst, vol. 2013, Article ID 972381, 14 pages, 2013. doi:10.1155/2013/972381

Direct ^{99m}Tc Cyclotron Production Target production

Isotopic composition (%)						
Mo- 100	Mo-98	Mo-97	Mo-96	Mo-95	Mo-94	Mo-92
99,05	0,54	0,07	0,11	0,10	0,05	0,08

Lamination

Sputtering on chemically inert baseplate

H. Skliarova , S. Cisternino , G. Cicoria , M. Marengo V. Palmieri"Innovative Target for Production of Technetium-99m by Biomedical Cyclotron"Molecules 2019, 24, 25; doi:10.3390/molecules24010025

Direct ^{99m}Tc Cyclotron Production Extraction Separation Purification

First automatic Prototype (Unife/S. Orsola OspBO)

Second automatic Prototype (Unife/S. Orsola OspBO)

In-house cyclotron production of high-purity Tc-99m and Tc-99m radiopharmaceuticals

Petra Martini^{a,b,*,1}, Alessandra Boschi^{b,*,1}, Gianfranco Cicoria^c, Federico Zagni^c, Andrea Corazza^c, Licia Uccelli^b, Micòl Pasquali^b, Gaia Pupillo^a, Mario Marengo^c, Massimo Loriggiola^a, Hanna Skliarova^a, Liliana Mou^a, Sara Cisternino^a, Sara Carturan^d, Laura Melendez-Alafort^e, Nikolay M. Uzunov^a, Michele Bello^d, Carlos Rossi Alvarez^a, Juan Esposito^a, Adriano Duatti^{a,f}

Applied Radiation and Isotopes Volume 118, December 2016, Pages 302–307

A solvent-extraction module for cyclotron production of highpurity technetium-99m

Direct ^{99m}Tc Cyclotron Production ¹⁰⁰Mo Recovery Techniques

¹⁰⁰Mo/^{99m}Tc separation module "waste": Na₂MoO₄ (H₂O)_x + NaOH

> $Na_2MoO_4 \rightarrow MoO_3$ Yield >90% MoO₃

 $MoO_{3}(s) + H_{2}(g) = MoO_{2}(s) + H_{2}O(g)$ $MoO_{2}(s) + 2H_{2}(g) = Mo(s) + 2H_{2}O(g)$ $750^{\circ}C - 950^{\circ}C$

Yield >90% MoO

Reduction in a temperature controlled reactor in H₂ overpressure

H. Skliarova, P. Buso, S. Carturan, C. R. Alvarez, S. Cisternino, P. Martini, A.Boschi, J. Esposito "Recovery of Molybdenum Precursor Material in the Cyclotron-based Technetium-99m Production Cycle" Instruments 2019 (under revision)

COME – CSN3 2016

COpper MEasurement

INFŃ ⁶⁷Cu production: the ⁷⁰Zn(p,x) reaction

Cross

Collaboration with:

- ✓ Arronax facility to measure the nuclear cross section for $E_P > 35 \text{ MeV}$
 - ✓ Experts in nuclear models to describe and explain the trend of the reaction Mr Luciano Canton (INFN-PD) Mr Andrea Fontana (INFN-PV)

⁷⁰Zn(p,x)⁶⁷Cu 40 **TENDL-2014 Cross Section** 35 Measured Talys E < 35 MeV 30 Talys* 25Discrepancy 20 PACE4 Talys-PACE 15 10 5 0 80 10 20 60 70 0 30 40 50 90 100 **Proton Energy (MeV)**

67Cu production: the ⁷⁰Zn(p,x) reaction Measurement at the Arronax facility

Beam	Energy [MeV]	Intensity [µA]
Proton	30-70	< 350 (x2)
Deuteron	15-35	50
Alpha	68	< 35

Alignment of collimator and target-holder on the beam-line @ Arronax

67Cu production: the ⁷⁰Zn(p,x) reaction Measurement at the Arronax facility

Energy [keV]	Cu-67 Intensity	Ga-67 Intensity
91.266 5	7.0 1	3.11 4
93.311 5	16.1 2	38.81 3
184.577 10	48.7 3	21.41 1
208.951 10	0.115 5	2.46 1
300.219 10	0.797 11	16.64 12
393.529 10	0.220 8	4.56 24
494.166 15		0.0684 14
703.106 15		0.0105 9
794.381 15		0.0540 18
887.688 15		0.148 3

Co-production of ⁶⁷Ga during ⁷⁰Zn irradiation:

⁶⁷Cu and ⁶⁷Ga both decay to ⁶⁷Zn
 → same y rays
 ⁶⁷Cu ⁶⁷Ga similar half-lives:

⁶⁷Cu (61.83 h) ⁶⁷Ga (78.24 h)

A chemical separation Cu/Ga is mandatory !!

Tracer: Cu-61 and Ga-66

Radiochemical procedure aimed at Cu/Ga/Zn separation

Petra Martini, PhD Micòl Pasquali, PhD

petra.martini@lnl.infn.it micol.pasquali@lnl.infn.it

PASTA – CSN5 2017/2018

Production with Accelerator of Sc-47 for Theranostic Applications

⁴⁷Sc production: the PASTA project Grant INFN 2017-2018

⁴⁷Sc theranostic radionuclide of great interest also for RAIT (long half-life) and possible use also in pair with ⁴⁴Sc (β⁺ emitter, PET)
→ Ongoing CRP (F22053) on ⁶⁷Cu, ⁴⁷Sc and ¹⁸⁶Re

Sc-47 3.3492 d 6	γ-ray [keV]	y-ray [%]	β- [keV]	β- [%]
β-:100% (Ti-47)	159.381 15	68.3 % 4	142.6 7 203.9 8	68.4 % 6 31.6 % 6
			Mean β- energy 162.0 keV 2 total β- int. 100.0% 8	

Contaminants of major concern are: ^{44m}Sc (58.61 h, IT ⁴⁴Sc 98.80%; ε ⁴⁴Ca 1.20%); ⁴⁴Sc (3.97 h, β⁺); ⁴⁶Sc (83.79 d, β⁻)

Isotope	half-life
⁴³ Sc	3.891 h 12
^{44g} Sc	3.97 h 4
^{44m} Sc	58.61 h 10
⁴⁵ Sc	stable
⁴⁶ Sc	83.79 d 4
^{46m} Sc	18.75 s 4
⁴⁷ Sc	3.3492 d 6
⁴⁸ Sc	43.67 h 9
⁴⁹ Sc	57.18 m 13
⁴⁷ Ca	4.536 d 3

Nuclear data extracted from NuDat 2.7 – https://www.nndc.bnl.gov/nudat2/

The enriched ⁴⁸Ti powder (99.32% purchased by TraceScience) has been deposited by HIVIPP method* (Ms Hanna Skliarova and Ms Sara Cisternino, E_PLATE project @ INFN-LNL)

*An application of a new type deposition method to nuclear target preparation, Isao Sugai

⁴⁷Sc: Preliminary results with ^{nat}V

⁴⁷Sc: Preliminary results with ^{nat}V

E_PLATE – CSN5 2018/2019

Electrostatic Powder pLating for Accelerator TargEts

Realization of Enriched Titanium Metal Targets: **E_PLATE Project** (Grant Giovani CSN5 2018–2019)

High intensity vibrational powder plating – HiViPP: This deposition technique exploits the phenomenon of vibrational motion of metallic particles in a static electric field [1].

Experimental set up

1 - backing (upper electrode, anode)

- 2 backing (lower electrode, cathode)
- 3 quartz or glass cylinder
- 4 pressing plate
- 5 spring
- 6 insulator holder

Advantages:

- Two targets are deposited simultaneously
- High Efficiency: 95-98%!
- High uniformity
- Small amount of starting material (≈50mg)

a.^{nat}Mo on Al (1mm) b.^{nat}Mo on Cu (250µm) c.⁴⁸Ti on Al (25µm)

[1] An *application* of a new type deposition method to nuclear target preparation, Isao Sugai

METRICS – CSN5 2018/2020

Multimodal pET/mRi Imaging with Cyclotron-produced ^{52/51}Mn and stable paramagnetic Mn iSotopes **AIM:** To achieve a genuine fusion between PET and MRI, having chemically identical contrast and radioactive agents

Multi Modality Imaging MMI		
PET/SPECT	CT/MR	
functional imaging	anatomical imaging	
radiolabeled tracer	contrast agent	
e.g. ¹⁸ F-FDG for PET	e.g. Ba and I for CT	
or ^{99m} Tc-HMPAO for SPECT	or Gd-OMNISCAN for MRI	

Develop/optimize the ⁵²Mn cyclotron production and proper separation/purification method

 \rightarrow Establish stable Mn(II)/⁵²Mn- complexes

Thank you for your attention!