ENSAR2-RITMI activities for improved supply of theranostic nuclides

Ulli Köster

Institut Laue-Langevin & UGA Grenoble, France

Different medical disciplines and professions

Physician medical doctor (MD) Radiology uses X-rays (CT) or MRI for imaging Radiation therapy uses closed radioactive sources or electron/Bremsstrahlung beams or hadron beams for irradiation Nuclear medicine uses open radioactive sources for imaging or therapy **Technologist** maintains instruments, places patients Medical physics calculates and measures doses prepares radioisotopes for nuclear medicine Radiochemist prepares injectable radiolabeled molecules Radiopharmacist

Nuclear physicist perspective

Nuclear medicine perspective

From diagnostics

to therapy

Comparison of Cancer Therapies

(Molls, TU München; according to Tannock: Lancet 1998, Nature 2006)

Prof. Molls

ПЛ

Question: How to treat such patients?

Learning from history

The principle of targeted therapies

- "attractive" vector > high uptake by the target
- transportable
- good in-vivo stability
- warriors "not visible"
- delayed uptake > suitable half-life
- limited space > high specific activity
- optimum arms
- specific

Metabolic targeting

Thyroid cancer ¹²³I⁻ for imaging ¹³¹I⁻ for therapy

Bone metastases

1.5 million patients world-wide

Imaging ^{99m}Tc-MDP for SPECT ¹⁸F⁻ for PET

Therapy

¹⁵³Sm-EDTMP (*Quadramet*)
⁸⁹Sr²⁺ (*Metastron*)
²²³Ra²⁺ (*Xofigo*)
¹⁷⁷Lu-BPAMD

Immunology approach

Multidisciplinary collaboration to fight cancer

Nuclear medicine and medical physics

Structural Formula of DOTA-TOC/TATE

Male 36 years of age Small cell pancreatic neuroendocrine tumour Liver metastases Ki-67 index 10-15% (liver biopsy)

4 cycles with ¹⁷⁷Luoctreotate and capecitabine

Partial remission

Roelf Valkema, EANM-2008.

Lymphoma therapy: RITUXIMAB+¹⁷⁷Lu E.B., 1941 (m): UPN 6

in CR

1.9.2002

13.9.2002

15.11.2002

15.9.2009

F. Forrer et al., J Nucl Med 2013;54:1045.

¹⁷⁷Lu-radioligand therapy of advanced prostate cancer

R.P. Baum et al., J Nucl Med 2016;57:1006.C. Kratochwil et al., J Nucl Med 2016;57:1170.K. Rahbar et al., J Nucl Med 2017;58:85.

Targeted radionuclide therapies in the clinic

The rising star for therapy

The Nuclear Medicine Alphabet

E. Hindié et al., JNM 2016;57:759.

Structural Formula of DOTA-TOC/TATE

Therapeutic window

Theranostics

Accurate dosimetry is essential for optimum use of the therapeutic window.

Theranostics

Accurate dosimetry is essential for optimum use of the therapeutic window.

Matched pairs for theranostics

Production of non-carrier-added ¹⁶¹Tb

Irradiation in high flux reactor, then chemical separation S. Lehenberger et al., Nucl. Med. Biol. 38 (2011) 917.

Therapeutic efficacy of ¹⁶¹Tb-RIT vs. ¹⁷⁷Lu-RIT

J. Grünberg et al. Eur J Nucl Med Mol Imaging 2014;41:1907.

Production of ¹⁴⁹Tb, ¹⁵²Tb and ¹⁵⁵Tb at ISOLDE

C. Müller et al. Nucl Med Biol 2014;41:e58.

¹⁵²Tb well matched for ¹⁷⁷Lu/¹⁶¹Tb-PRRT dosimetry

C. Müller et al. EJNMMI Research 2016;6:35.

First-in-human study with ¹⁵²Tb-DOTATOC

R.P. Baum et al. Dalton Transactions 2017;46:14638.

Alpha-PET with ¹⁴⁹Tb

G.J. Beyer et al., Eur J Nucl Med Molec Imaging 2004;31:547.

Terbium: a unique element for nuclear medicine

Dy 150 7.2 m	Dy 151 17 m	Dy 152 2.4 h	Dy 153 6.29 h	Dy 154 3.0 · 10 ⁶ a	Dy 155 10.0 h	Dy 156 0.056	Dy 157 8.1 h	Dy 158 0.095	Dy 159 144.4 d	Dy 160 2.329	Dy 161 18.889	Dy 162 25.475
 4.23 γ 397 	€; α 4.07 γ 386; 49; 546; 176 g; m	(x 3.63 y 257 9	e; β ⁺ α 3.46 γ 81; 214; 100: 254	a 2.87	ε β ⁺ 0.9; 1.1 γ227	ar 33 ⊎n ar <0.009	ε γ 326	ar33 σ _{0.α} <0.006	≪ γ 58; e [−] σ 8000	ιτ 60 τπ. α <0.0003	σ600 σ _{0.α} <1E-6	or 170
Tb 149 42 m 4.1 h # 2.97 # 3.90 1796; 1,355; 1955	Tb 150 5.8 m 3.67 h 1608 15° 3.11 1608 15° 15° 3.11 1608 15° 15° 3.10 1608 15° 15° 3.10 1609 15° 3.40 1677 15° 3.40 1677 15° 3.40 1678 15° 3.40 15° 3.40 15	Tb 151 25 s 17.6 h (14) 23	Tb 152 42 m 17.5 h h 700 / 17.5 h h 700 / 17.5 h y 344; 506; 201	Tb 153 2.34 d	Tb 154 23 h 9.0 h 21 h 1.7 h 1.7 h 1.7 h 1.7 h 1.7 h 1.7 h 1.2 h 1	Tb 155 5.32 d ε γ87; 105; ten: 262	Tb 156	Tb 157 99 a	Tb 158 10.5 s 180 s 19 (110) 9844, 19 (110) 9844,	Tb 159 100	Tb 160 72.3 d β ⁻ 0.6; 1.7 γ879; 299; 966 σ 570	Tb 161 6.90 d β ^{- 0.5; 0.6} χ ^{26; 49; 75}
Gd 148 74.6 a ^{a 3.183} ^{o 14000}	Gd 149 9.28 d ¢; a 3.016 y 150; 299; 347	Gd 150 1.8 · 10 ⁶ a	Gd 151 120 d •; a 260 y 154; 243; 175	Gd 152 0.20 1.1 · 10 ¹⁴ a a 2.14; or 700 orb, a <0.007	Gd 153 239.47 d ^e y97: 103: 70 g20000 ga.u 0.03	Gd 154 2.18	Gd 155 14.80 14.80 14.80	Gd 156 20.47	Gd 157 15.65 σ ₂₅₄₀₀₀ σ _{n, α} < 0.05	Gd 158 24.84	Gd 159 18.48 h	Gd 160 21.86

IS528: Novel diagnostic and therapeutic radionuclides for the development of innovative radiopharmaceuticals

Anu Airaksinen, Martina Benesova, Thomas Cocolios, David Cullen, Gilles de France, Andrew Fenwick, Kelly Ferreira, Hanna Frånberg, Catherine Ghezzi,
Nadezda Gracheva, Ferid Haddad, Kerttuli Helariutta, Peter Ivanov, Ulrika Jakobsson, Mikael Jensen, Karl Johnston, Steven Judge, Ulli Köster, Gilles Montavon, Cristina Müller, Bernd Pichler, Jean-Pierre Pouget, Andrew Robinson,
Anna-Maria Rolle, Roger Schibli, Gregory Severin, Jill Tipping, Andreas Türler, Christoph Umbricht, Stefan Wiehr, Nick van der Meulen, Etienne Vermeulen

Shielded ENSAR2 collection chamber

Transport limitations (ADR, IATA)

BASIC RADIONUCLIDE VALUES FOR UNKNOWN RADIONUCLIDES OR MIXTURES

Radioactive contents	A ₁ TBq	A ₂ TBq	Activity concentration for exempt material Bq/g
Only beta or gamma emitting nuclides are known to be present	0.1	0.02	1×10^{1}
Alpha emitting nuclides but no neutron emitters are known to be present	0.2	9 × 10 ⁻⁵	1 × 10 ⁻¹

20 GBq ¹⁶¹Tb, 90 MBq ¹⁴⁹Tb

CERN CH1211 Geneva 23 Switzerland

ΙΑΕΑ

REFERENCE

CERN-DGS-2012-046-RP-TN

HSE Unit

Calculation of A2 values for short-lived radionuclides produced at the ISOLDE experiment at CERN

2016: IAEA TRANSSC will include ¹⁶¹Tb (**A2=0.7 TBq**) and ¹⁴⁹Tb (**A2=0.8 TBq**) in SSR6 update

Boundary conditions for ENSAR2-RITMI (2013)

focus on particular strengths of ENSAR2 facilities

- protons >> 30 MeV
- beams of alphas and heavier ions
- ISOL target technology
- mass separation

⇒ focus on alpha emitters: highest "value" per # of atoms and production of Sc isotopes with alpha beams

Radionuclidic purity without mass separation ?

Which theranostic isotopes will we use in future ?

Radionuclides for RIT and PRRT

Radio- nuclide	Half- life	E mean (keV)	Eγ (B.R.) (keV)	Range	cross-	fire	
Y-90	64 h	934 β	-	12 mm		Estab- lished	
I-131	8 days	182 β	364 (82%)	3 mm		isotopes	
Lu-177	7 days	134 β	208 (10%) 113 (6%)	2 mm		Emerging isotopes	
Tb-161	7 days	154 β 5, 17, 40 e ⁻	75 (10%)	2 mm 1-30 µm		חפם	
Tb-149	4.1 h	3967 α	165,	25 µm	isotopes: supply-		
Ge-71	11 days	8 e-	-	1.7 µm			
Er-165	10.3 h	5.3 e ⁻	-	0.6 µm	V	mmeu:	

localized

Modern, better targeted bioconjugates require shorter-range radiation \Rightarrow need for adequate (R&D) radioisotope supply.

ENSAR(x) facilities provide unique features and technology, also useful for innovative radiopharmaceuticals.