

R&D ACTIVITIES FOR THE PRODUCTION OF RADIOISOTOPES AT GANIL

M. Fadil, G. de France, F. De Oliveira, H. Franberg, <u>A.M. Frelin-Labalme</u>, X. Ledoux, M. Michel, M.H. Moscatello, C. Stodel

GANIL, CEA/DSM-CNRS/IN2P3, B.P. 55027, 14076 Caen Cedex 5

Short terms projects
 ²¹¹At
 Other α emitters
 Dosimetry

Conclusion and perspectives

A great density of skills

Nuclear Physics Astrophysics Applications

Atomic Physics Material science

Life and health science

Radiobiology

Medicine Hadrontherapy center

The SPIRAL 2 Linac

A CREATER AS A STREET			RFQ f	Frequency I	= = 88MHz
	1,120				
		Q/A	I (mA)	Energy (Mev/u)	CW max beam Power (KW)
	Protons	1/1	5	2 - 33	165
	Deuterons	1/2	5	2 - 20	200
	Ions	1/3	1	2 - 14.5	45
	Ions (option)	1/6	1	2 - 8	48

• Irradiation station (n, p, d)

NFS Converter room

Opportunities at SPIRAL 2

- □ Limited current (cyclotrons):
 - Dedicated equipments, not optimized for R&D production of new isotopes (fixed energy) => cross-section, contamination,...
 - **D** Only proton, deuteron and/or α -particles
 - Target not designed for high beam intensities
- New possibilities at SPIRAL2:
 - Very intense beams at variable energy (Imax=5 mA for 40MeV d)
 - New beams compared to existing production facility machines

Strategy for radio-isotopes studies

- Only R&D
- Collaboration
- Targeted goals
- Alpha emitters
- Current isotopes of interest:
 - ²¹¹At (ARRONAX et al)
 - \square α +Th reaction products

Short terms projects
 At-211
 Other α emitters

Dosimetry

Conclusion and perspectives

Production using ²⁰⁹Bi(α ,2n)²¹¹At

- Reaction
 - Reaction threshold 20.718 MeV
 - Cross section max 700 mb at 30 MeV
 - □ Production of contaminant ²¹⁰Po ²⁰⁹Bi(α ,3n)²¹⁰At → ²¹⁰Po, t_{1/2} = 138 d, Et=28.613 MeV
 - At 30 MeV: ratio N²¹⁰At/N²¹¹At < 10⁻⁴

Production estimate:

- 🗖 Alpha 28 MeV, 1 kW
- Target : Bi on AIN backing
- ²¹¹At production : 9.6 GBq in 8h

Scenario

- Target from ARRONAX
- Irradiation at SPIRAL2
 - Irradiation station in the converter room
 - Beam: 28 MeV α, 70 μA (3.15^e14 α/s)
 - Tirr: 4 to 8h
 - Production of ~10GBq of ²¹¹At
 - Dose Rate after 30 min cooling: 0.25 mSv/h at 30 cm
- Irradiated targets sent to ARRONAX
- Extraction, labelling, QC at ARRONAX

Thermal study

- 1kW deposited
- Two designs:
 - Target on cold copper
 - Direct backing liquid cooling
- Parameters:
 - Thermal resistance target-copper
 - Cooling liquid temperature

1 kW OK. Measurement of thermal resistance

	résistance thermique	1KW	1,5KW	2KW
solution plaquée (eau 15°C)	100 mm².C/W	188	292	
	200 mm ² .C/W	252	387	
solution plaquée (éthanol -30°C)	100 mm ² .C/W	140	243	
	200 mm ² .C/W	202	340	
solution contact eau (eau 15°C)		156	228	309
solution contact eau (éthanol -30°C)		105	180	260

Tableau 4 : températures maximum de la cible calculées en °C

The irradiation station

- Manual load/unload
- Unload using vinyl confinement
- Dosimetry measurements
 - extremity : 480 µSv
 - Full body : 20 µSv
- Shipment : A type parcel

Collaboration NPI Rez (Tcheque Rep.) Under manufacturing

eau, actionné verticalement par vérin pneumatique. Ici en position basse,

Higher power dissipation

- Production via α + Bi
- □ Goal: ~10 kW
- Rotating target

Ø beam (+/-3 σ) = 24 mm we kept the angle of the target of 15°

Collaboration NPI Rez (Tcheque Rep.) Feasibility study

Design of a generator using ²⁰⁹Bi(⁶Li,4n)²¹¹Rn or ²⁰⁹Bi(⁷Li,5n)²¹¹Rn

- Reaction
 - Reaction threshold
 - 28.5 MeV for ²⁰⁹Bi(⁶Li,4n)
 - 36.13 MeV for ²⁰⁹Bi(⁷Li,5n)
 - ²¹⁰Po contamination
 - E(⁶Li)> 36 MeV for ²⁰⁹Bi(⁶Li,4n)
 - E(⁷Li)> 48 MeV for ²⁰⁹Bi(⁷Li,5n)
 - Energy domain of SPIRAL2
- Production estimate:
 - LISE code
 - Lithium beam stopped in target
 - Optimal irradiation time : 14h
 - Best reaction ²⁰⁹Bi(⁷Li,5n)²¹¹Rn

48 MeV	36 MeV	Rapport activité
Act-utile (Bq/μA)	Act-utile (Bq/μA)	
⁷ Li	⁶ Li	⁷ Li/ ⁶ Li
4,84E+05	1,83E+05	2,65

Short terms projects
 At-211
 Other α emitters
 Dosimetry

Conclusion and perspectives

Generators from the α + ²³²Th reaction

Neptunium 237 decay chain

Other α -emitters

²²⁴Ra generator

- Database TENDL-2014: Reaction α + ²³²Th
- Reaction threshold
 - \approx 50 MeV for α + ²³²Th
 - \approx 100 MeV for α + ²³⁸U
- Production rate calculations :
 - Natural thorium target 0.05 cm so that $E_{out} \approx 50 \text{ MeV}$
 - 80 MeV, I=200 μA (6.2e14 α/s)
 - □ T_{irr}=1d
 - FISPACT-II vs PHITS : huge differences

⇒ Approved experiment at NFS

MCNPX+FISPACT II		PHITS	
²²⁴ Ra	3.56×10 ⁸ Bq/g	5.34×10 ⁶ Bq/g	

Other α -emitters

Irradiation 1j

Irradiation 10 j

1.24E+08

9.30E+08

0.39%

0.495%

Short terms projects
 At-211
 Other α emitters
 Dosimetry

Conclusion and perspectives

Dosimetry

Development of a new radiopharmaceutical

Evaluation / Trials **Preclinical** / clinic

PHYSICAL dose vs. BIOLOGICAL observable

e.g: tumour volume vs. delivered dose

Tumor progression after (panel A) no treatment and (panel B) delivery of 60 Gy in three fractions on days 20, 45 and 59. The heat scale is given in signal intensity per unit area. Panel C: Tumor growth curve obtained by integrating the bioluminescence imaging signal over a region of interest. (reprint of Saha 2010)

Dosimetry: MIRD Formalism

Case of in vitro irradiation

2mm of culture medium + vectorized isotopes

 $D(Gy) = \frac{E(J)}{m(kg)}$

In radionuclide therapy:

Nb of radionuclide decays in a particular volume A_S × energy emitted per decay E_0 × fraction of emitted energy absorbed by a particular $\varphi_T \leftarrow S$

(target) mass

555 $D_T = \frac{A_S \cdot E_0 \cdot \varphi_{T \leftarrow S}}{P_T \leftarrow S}$

Max range in water = 90 μm
 ⇒ a small fraction of radionuclides is "seen" by the cells. HOW MUCH ???
 ⇒ cell thickness ?

Determining the spatial (and temporal) activity observed by the target
 Determining the fraction of energy left by radiations in the target

1) Spatial and temporal distribution

Experimental setup:

1,8 mm of culture medium +15 kBq of vectorized isotopes

Custom-made plastic well 2,5 µm mylar base

CH1) Custom-made well, 2.5 µm mylar base

 $t = 0 \min$ 2.5 Number of events /s /bin = 15 min $t = 65 \min$ 2 = 245 min1.5 0.5 0 0 2 3 4 5 6 7 8 9 Deposited energy (MeV)

3

Silicon detector ↓ Time of interaction & Deposited energy

Experimental energy spectra

1) Spatial and temporal distribution

Monte Carlo simulations

Position of alpha emission in the culture medium

1) Spatial and temporal distribution

Monte Carlo simulations:

1) Spatial and temporal distribution

Monte Carlo simulations vs Experimental spectra:

1) Spatial and temporal distribution

Spatial distribution of isotopes in the medium at different post-injection times

2) Dose calculation

$$A(t, z_i) = h(t) + a(t) \cdot e^{-b(t) \cdot z_i}$$

$$\frac{dD}{dt}(t) = \sum_i A(t, z_i) \cdot S(z_i)$$

$$\int_i^{0.018} \frac{B}{0.014} - \frac{B}{0.014} + Homogeneous and static distribution}{Homogeneous and static distribution}$$

$$\int_{0.002} \frac{B}{0.004} - \frac{B}{0.004} + \frac{B}{0.006} + \frac{B}{0.00} + \frac{B}{0.00} + \frac{B}{0.000} + \frac{$$

Almost a factor 2 in biological effect interpretation

Conclusion and perspectives

- SPIRAL-2 beams offer opportunities for R&D on production of innovative radioisotopes
- GANIL concentrate on alpha emitters
- □ Target irradiation: Astatine (with ARRONAX, SUBATECH, NPI Rez):
 - Irradiation station for Bi under construction
 - Design study for high power (10 kW; solid Bi)
 - Long-term: liquid bismuth target with continuous online extraction of At-211 or Rn-211
 - Measurements of ^{6,7}Li+²⁰⁹Bi at NFS; impurities

Conclusion and perspectives

□ Other alpha emitters : Bi-213, Pb-212:

- **Production study using** α + ²³²Th. Approved experiment.
- Cross-section measurements \leftrightarrow nuclear data interest

Development of dosimetry studies to evaluate new radioisotopes:

- Focus on alpha dosimetry (detection methods; in-vitro distribution; effects;...). Very little done
- Connection physics-radiobiology; interdisciplinary studies; CYCERON/ISTCT

Thank you for your attention

SPIRAL 2 construction phases

SPIRAL-2 phase 1 building

The Linear Accelerator

Total length: 65 m	(without HE lines)
--------------------	--------------------

Slow (LEBT) and Fast Chopper (MEBT) RFQ (1/1, 1/2, 1/3) & 3 re-bunchers

12 QWR beta 0.07 (12 cryomodules)

14 (+2) QWR beta 0.12 (7+1 cryomodules)

1.1 kW Helium Liquifier (4.5 K)

Room Temperature Quadrupoles

Solid State RF amplifiers (10 & 20 KW)

RFQ frequency F = 88MHz

	Q/A	I (mA)	Energy (Mev/u)	CW max beam Power (KW)
Protons	1/1	5	2 - 33	165
Deuterons	1/2	5	2 - 20	200
Ions	1/3	1	2 - 14.5	45
Ions (option)	1/6	1	2 - 8	48

Sources and LEBT and RFQ

First beam (230 µA Argon 9+) July 10, 2015

ECRIS A/Q=2 First beam (2mA H⁺) Dec. 19th, 2014 RFQ: First beam (H+) Dec 3rd, 2015

RFQ Commissioning with beam :

- A/Q=1 (protons) with 5 mAe CW
- A/Q=2 (⁴He²⁺) with 1,3 mAe CW
- A/Q=3 ($^{18}O^{6+}$) with 600 µAe

High Energy Beam Line

Neutron Spectra

Continuous spectrum

 $E_{max} = 40 \text{ MeV}$, $\langle E \rangle = 14 \text{ MeV}$

Quasi-monoenergetic spectrum

 $E_n = up to 31 MeV$

40 MeV d + Be at 50 µA

Rotating converter thick target C or B (8mm) P< 2 kW

p + Li (1mm) at 20 µA

Comparison with other Neutron TOF facilities

1- Sample irradiation in the converter room

Neutron irradiation

- Spectrum similar to IFMIF - $\Phi > 10^{11} \text{ n/s/cm}^2$

2- Transfer of sample to TOF room

Cross-section measurements by activation method Study of radioisotope production

ion induced reactions

Detector based on liquid scintillator EJ309

- Neutron spectrum and flux measurement by the TOF technique
- \bullet n- $\!\gamma$ discrimination by pulse shape analysis
- Characterization
 - \circ at Ganil reaction 10,5 MeV/A Kr + Cu
 - Light response between 5 and 30 MeV
 - $_{\odot}$ at CEA/DIF
 - Mono-energetic neutrons at 4, 5, 6 and 15 MeV
 - Efficiency measurement

Proton recoil telescope

- CH2 radiator + ΔΕ-ΔΕ-Ε Si telescope
- Prototype tested at GANIL

Super Separator Separator

ຐຘຆຬ

Study of rare events in nuclear and a ^{3 magnetic dipoles}

7 superconducting quadrupoles triplets 1 Electric dipole

A. Drouart

S3 Physics case (15 Lols)

- VHE SHE elements
- Proton drip-line and N=Z
- Nuclear astrophysics
- Atomic physics

 Global physics program has been defined. The condition is ready to work out detailed proposals

- Commissioning experiments
- Preparatory studies in different laboratories are underway
 - ✓ Feasibility of in-source laser spectroscopy (400 MHz)
 - ✓ VHE decay spectroscopy @ LISE
 - High power target station @ GANIL

Status :

- End of the construction : T3 2017
- In beam commissioning : from T3 2017 -
- First experiment : 2018

S3 experiments @ GANIL PAC (T2 2017)

First campaign setting to be defined in 2016

- Neutron transport simulations are needed for :
 - Safety purpose (biological protection, activation,
 - waste management...)
 - Background evaluation
- Simulations characteristics :
 - MCNPX neutron code
 - Neutron source d+Be and p+⁷Li

40 MeV d + Be at 50 μ A

E MeV	Flux at 5 m
0-40	$8.10^7 \text{ n/cm}^2/\text{s}$
5	2.10 ⁶ n/cm ² /MeV/s
14	5.10 ⁶ n/cm ² /MeV/s
30	$6.10^5 \text{ n/cm}^2/\text{MeV/s}$

Rotating converter

- thick target C or Be
- \circ P< 2 kW

Quasi-mono-energetic neutron spectra

