Material science and nanostructures produced with GeV heavy ions

- Facility for high-energy ions
- Ion solid interaction at high energies
- Beam-induced surface effects
- Ion-track nanotechnology

Christina Trautmann, GSI Helmholtzzentrum & Technische Universität Darmstadt, Germany

Helmholtz Centre for Heavy Ion Research

Founded	1969
Budget	~ 110 Mio €∕
Employees	~ 1300
Scientific users	> 1500

Facility for relativistic heavy ion beams Darmstadt, Germany

Helmholtz Centre for Heavy Ion Research

inear Accelerato

Heavy-lons Synchrotron SIS

5

ion sources all elements (p....U) UNILAC max energy 11 MeV/u (v ~ 15%c) Storage Ring ESR

SIS

max energy 1 GeV/u U-ions (v ~ 90%c)

3

Facility for Antiproton and Ion Research FAIR

future facility

- international facility
- 1600 Mio Euro
- 2018 2025 construction

GSI today

• first beam expected 2025

Facility for Antiproton and Ion Research

FAIR Construction Site

- SIS100:
 1.1 km circumference
 20 m deep in ground
- 1400 pillars drilled 60 m into ground for subsoil stabilization

construction site October 2018

- area buildings ~ 98 000 m²
- 24 buildings (vol ~1 Mio m³)
- 0.6 Mio m³ of concrete

GSI/FAIR Research fields – 4 physics pillars

- **CBM** Dense and Hot Nuclear Matter
- **NUSTAR** Nuclear Structure far off stability Physics of Explosive Nucleosynthesis
- PANDA Hadron Structure & Dynamics with cooled antiproton beams

- APPA
- Atomic Physics and Fundamental Symmetries
- Plasma Physics
- Radiation Biology and hadron cancer therapy

Ion irradiation of solids

2-GeV Au projectile \rightarrow high-T_c superconductor 15% velocity of light

Ion irradiation of solids

each projectile produces damage trail = ion track

disorder amorphous

broken bonds simple defects defect clusters

Ion - solid interaction

1-GeV ion v = 10% c range ~50 μ m

Ion - solid interaction

1-GeV ion v = 10% c range ~50 μ m

Track size depends on many parameters

changing **composition**

pyrochlor

Gd₂Ti₂O₇ 2.2-GeV ¹⁹⁷Au 40 keV/nm; RT

20 keV/nm; RT

decreasing energy density

Gd₂Ti₂O₇ 1.1-GeV ¹⁰¹Ru decreasing temperature

J. Zhang, J. Mater. Res. (2010)

Gd₂Ti₁O₅ 2.2-GeV ¹⁹⁷Au 40 keV/nm; RT

Gd₂Ti₂O₇ 2.2-GeV ¹⁹⁷Au 40 keV/nm; **8 K**

most important parameter = energy loss of ions

energy loss of different ions

most important parameter = energy loss of ions

UNILAC energies

specific energy = 10 MeV/nucleon ${}^{40}\text{Ar} \rightarrow 10 \times 40 \text{ MeV} = 400 \text{ MeV}$ ${}^{238}\text{U} \rightarrow 10 \times 238 \text{ MeV} = 2380 \text{ MeV}$

Sensitivity of materials for ion track formation

Track formation depends on materials nature

high sensitivity		low sensitivity
dE/dx threshold ~1 keV/nm	~20 keV/nm	~50 keV/nm
insulators	semi-conductors	<u>metals</u>
polymers	amorphous Si, Ge	amorphous alloys
 oxides, spinels 	GeS, InP, Si _{1-x} Ge _x	Fe, Bi, Ti, Co, Zr
ionic crystals	- St, Ge	- Au, Cu, Ag,
- diamond	no tracks	

Materials science with swift heavy ions

destructive power

track formation & degradation

microscopic

macroscopic

structuring tool

User facility for materials science

Irradiation parameters

- ion species: C ... U
- energies: 4 11.4 MeV/u
- max range: ~100 μm
- fluence range: 1–10¹⁴ ions/cm²
- variable temperature conditions

Proposal required

Users are organized in MAT collaboration Registration via GSI webpage https://www.gsi.de/work/forschung/appamml/materialforschung/mat_collaboration.htm

Microprobe for targeting with single ions

- protons U ions
- E_{max} 11.4 MeV/u
- absolute targeting accuracy < 1µm
- targeting rate 1000 ions/s

nuclei of living cells

M-branch: Irradiations combined with in situ analysis

x-ray diffraction

XRD

in-situ techniques

- electron microscopy
- x-ray diffraction

spectroscopy

FTIR

QMS

cryo.

- Raman spectroscopy
- infra-red spectroscopy
- AFM / STM
- secondary ion/neutral mass spectrometry

In-situ equipment operated in collaboration with various German universities

microscopy

HR SEM

UHV AFM

Irradiation experiments with highly-charged or fully-stripped ions (e.g. 10 MeV/u U⁹²⁺)

- Slow highly-charged or fully-stripped ions
 - tune potential energy (charge state)
 - tune kinetic energy (up to ~10 MeV/u)
- Surface processes far from thermal equilibrium
- Deposition of highest energy densities
- Tailored nanostructures with individual ions

Part 1 drilling holes

Part 2

.... filling holes

fluence (ions/cm²) determines number of pores irradiation angle defines pore orientation

etching process defines

pore size: 15 nm – few µm

short etching long etching aspect ratio > 1000 possible

most suitable polymers

- PET polyethylene terephthalate (e.g., Mylar) PC polycarbonate (e.g., Lexan, Makrofol)
- Pl polyimide (e.g., Kapton)

tapered

double-conical

Building bio-inspired smart nanochannels

bio-membrane

ion channel closed

ion channel open

transport of biomolecules

responsive channels

biosensor

recognition at decoration sites

ligand binds to receptor

Sensors based on single nanopores

Translocation of particle through nanopore

current signal during DNA translocation

Part 2

.... filling of holes

Ion track membranes as templates

free-standing metal needles

Electrochemical deposition

Electrochemical deposition

single-crystalline growth favored at

- low voltage
- high temperature

Micro- and Nanowires

Semimetals Bi smooth (PC) Sb rough (PET) 100 nm c(Bi):c(Sb) = 7:3 3.23 Å 5 nm

Semiconductors

Nanowire release and manipulation

KO 1/8 3/4

Nanowire properties due to small-size effects

plasmonic properties

- field emission
- electrical resistivity

- thermo-electrical
- thermal stability

Rayleigh instability at T << melting

Thermal stability of Cu nanowires

30 min annealed in vacuum

Cu: Toimil et al, APL 85 (2004) Au: Karim et al., Nanotechn *17* (2006) ⁴⁰

Material science user platform

- ion species
- beam energy energy loss
- efficient sample irradiation system
- in-situ beam monitoring
- in situ analysis (outgassing, spectroscopy....)

Existing and future MAT User platform

Thank you

TITI

FAIR beams 2025