
II Corso RedHat per sistemisti INFN

RHEL/SL/CentOS 7
Networking

Table of contents

• IPv6 – a fast’n’furious introduction
• network device naming
• configuring network settings: NetworkManager,

nmcli
• ip, ss: what about ifconfig, arp, route, netstat?
• link aggregation
• bridging

LNF 26-30/11/2018 II Corso RedHat per sistemisti INFN

IPv6 addressing

LNF 26-30/11/2018 II Corso RedHat per sistemisti INFN

IPv6 address space folklore

– the IPv6 address space uses 128-bit address, which means we
have a theoretical limit of 2128 available addresses

– “that is 340,282,366,920,938,463,463,374,607,431,768,211,456,
or 340 undecillion, 282 decillion, 366 nonillion, 920 octillion, 938
septillion, 463 sextillion, 463 quintillion, 374 quadrillion, 607
trillion, 431 billion, 768 million, 211 thousand and 456 addresses.
Which should be just about enough for the Internet of (Insecure
Intrusive Gratuitously Connected) Things.”

– or ~3,40x1038 available addresses,which means ~6,67x1023

addresses/m2

IPv6 address representation

• Every IPv6 address is divided into 8 16-bit hexadecimal blocks
separated by colons:
– 2001:0d8b:0000:0000:0202:b3ff:fe1e:8329

• Abbreviations are possible (see RFC5952: A Recommendation for
IPv6 Address Text Representation) : 1) leading 0s in a 16-bit block
can be skipped; 2) a double colon can replace consecutive 0s or
leading o trailing 0s (but the double colon can appear only once in
an address):
– 2001:d8b:0:0:202:b3ff:fe1e:8329
– 2001:d8b::202:b3ff:fe2f:8329

• 2 special addresses:
– loopback: 0:0:0:0:0:0:0:1 => ::1/128
– unspecified: 0:0:0:0:0:0:0:0 => ::0/128 (should not be assigned to any host

and it should olny be used as the source address by initializing host before it has
learned his own address)

LNF 26-30/11/2018 II Corso RedHat per sistemisti INFN

IPv6 addressing model

• IPv6 addresses are assigned to interfaces, and are characterized
by:
– a topological scope:

• interface-local
• link-local
• global
• …

– a target scope:
• unicast
• multicast
• anycast

– a lifetime span
• static
• temporary: valid, preferred, deprecated, ...

LNF 26-30/11/2018 II Corso RedHat per sistemisti INFN

Topological scope

• RFC4007: IPv6 Scoped Address Architecture

– Every IPv6 address other than the unspecified address has a specific
scope; that is, a topological span within which the address may be used
as a unique identifier for an interface or set of interfaces. The scope of
an address is encoded as part of the address, (…)

– unicast addresses can have:
• interface-local scope, for intra-node (loopback) communication
• link-local scope, for uniquely identifying interfaces within (i.e.,

attached to) a single link only (~LAN scope).
•
• global scope, for uniquely identifying interfaces anywhere in the

Internet

LNF 26-30/11/2018 II Corso RedHat per sistemisti INFN

Target scope

• RFC4291: IP Version 6 Addressing Architecture
– 3 types of addresses (the type of an address is encoded as part of the

address):
• unicast: an identifier for a single interface. A packet sent to a unicast

address is delivered to the interface identified by that address.
• anycast: an identifier for a set of interfaces (typically belonging to different

nodes). A packet sent to an anycast address is delivered to one of the
interfaces identified by that address (the "nearest" one, according to the
routing protocols' measure of distance).

• multicast: an identifier for a set of interfaces (typically belonging to different
nodes). A packet sent to a multicast address is delivered to all interfaces
identified by that address.

• There are no broadcast addresses in IPv6, their function being
superseded by multicast addresses.

LNF 26-30/11/2018 II Corso RedHat per sistemisti INFN

IPv6 addresses/prefixes examples

LNF 26-30/11/2018 II Corso RedHat per sistemisti INFN

binary hex

unspecified 0000 … 0000 ::/128

loopback 0000 … 0001 ::1/128

global unicast 0010 … 2000::/3

link-local unicast 1111 1110 10... FE80::/10

unique local unicast 1111 1100 1111 1101 ... FC00::/7

multicast 1111 1111… FF00::/8

IPv6 multicast addresses examples

interface-local
scope

link-local scope generic form

all-nodes ff01::1 ff02::1 ff0X::1

all-routers ff01::2 ff02::2 ff0X::2

… … … …

all-NTP-servers ff01::101 ff02::101 ff0X::101

… … … …

LNF 26-30/11/2018 II Corso RedHat per sistemisti INFN

IPv6 address allocation

LNF 26-30/11/2018 II Corso RedHat per sistemisti INFN

IPv6 host-required addresses

Each IPv6 enabled host must assign the following
addresses:

• the loopback address
• link-local address for each active interface
• any assigned global unicast or anycast addresses
• the all-node multicast address (ff02::1)
• the solicited-node multicast address for each interface

(ff02::1:ffxx:yyzz where xx, yy and zz are taken from interface ID)

=> all-node & solicited-node multicast addresses are involved, for
example, in link-layer address resolution via multicast

LNF 26-30/11/2018 II Corso RedHat per sistemisti INFN

IPv6 address configuration options

• stateful
– manual
– via DHCPv6

• stateless
– SLAAC: stateless address autoconfiguration

• unique interface ID:
– static via modified EUI64
– dynamic/temporary, randomly generated to avoid tracking and

enforce privacy
» RFC4941, Privacy Extensions for Stateless Address

Autoconfiguration in IPv6
» RFC7217, A Method for Generating Semantically Opaque

Interface Identifiers with IPv6 SLAAC (ie subnet-stable)
• network ID (routing prefix): via Neighbour Discovery Protocol

LNF 26-30/11/2018 II Corso RedHat per sistemisti INFN

Neighbour Discovery Protocol

• prefix discovery/notification
• router discovery
• parameter configuration
• address autoconfiguration
• Duplicate Address Detection (DAD)
• address resolution (~ARP)
• Neighbor Unreachability Detection (NUD)

LNF 26-30/11/2018 II Corso RedHat per sistemisti INFN

NDP messages

• Router Solicitation message (RS): sent by a host in order to discover any
routers on the link – destination is all-router multicast: ff02::2

• Router Advertisement message (RA): sent on a regular basis by a router or
in response to a RS - carries global prefix information, router preference,
router LLA and a few flags to politely suggest address configuration method
(stateful via DHCPv6, stateless, stateless with additional parameters via
DHCPv6

• Neighbor Solicitation message (NS): sent by a host to perform LLA
resolution (~ARP), DAD during auto-configuration (both for link-local and
global addresses) or NUD

• Neighbor Advertisement message (NA): sent in response to a NS message
(solicited NA) or spontaneously (unsolicited NA).

Each node mantains a Neighbor Cache in which all IPv6 and LL addresses of its
neighbors are listed in one out of five possible states: INCOMPLETE, REACHABLE,
STALE, DELAY, PROBE – see RFC4861: Neighbor Discovery for IPv6.

LNF 26-30/11/2018 II Corso RedHat per sistemisti INFN

SLAAC flowchart

LNF 26-30/11/2018 II Corso RedHat per sistemisti INFN

DAD is performed for both automatically and manually configured addresses

IPv6 addresses in linux

LNF 26-30/11/2018 II Corso RedHat per sistemisti INFN

DAD @ work

LNF 26-30/11/2018 II Corso RedHat per sistemisti INFN

real world IPv6 addressing schemes

Managing IPv6 DNS records and manually configuring
hosts can be a real nightmare. You can register and
configure only nodes that must be reached from outside
your network (ie nodes exposing well known services:
DNS, mail, web, … servers) and leave other nodes:
• configure itself via DHCPv6, or a slightly modified version by F.

Prelz implementing the so called DA-DA mechanism (DNS driven
Allocation of DHCPv6 Addresses);

• configure address via SLAAC and learn other network configuration
parameters via DHCPv6 (default prefix, DNS servers, domain
search list) and RA (default router) – privacy (and entropy )
enforced, but an address monitoring tool is mandatory.

LNF 26-30/11/2018 II Corso RedHat per sistemisti INFN

Table of contents

• IPv6 – a fast’n’furious introduction
• network device naming
• configuring network settings: NetworkManager,

nmcli
• ip, ss: what about ifconfig, arp, route, netstat?
• link aggregation
• bridging

LNF 26-30/11/2018 II Corso RedHat per sistemisti INFN

Consistent network device naming

Modern x86-based servers support an increasing number of network interface ports on
the motherboard in addition to add-in network adapters. Linux-based OSes name these
interfaces as ethN. The naming of network interfaces is currently non-deterministic and
not governed by any standard in terms of their relationship to the way the ports are wired
on the system. Common user expectations such as 'eth0' representing the first network
port on the motherboard as labeled on the server chassis cannot be fulfilled in many
cases.
Ensuring that the Ethernet interface names follow the order of the devices intended by
the system designer might not be sufficient. The «ethN» names currently in use do not
suggest the Ethernet interface’s physical location, whether it is on the system’s
motehrboard or if it is on an add-in card; or if it is on an add-in card with multiple ports,
which porton the card it is on.
Consequently, a naming mechanism that can impart meaning to the network interface’s
name based on the physical location of a network port in concordance to the intended
system design is necessary.

From «Consistent Network Device Naming in Linux» by Narendra K –DELL, 2012

LNF 26-30/11/2018 II Corso RedHat per sistemisti INFN

Naming schemes hierarchy

By default systemd will name network interfaces applying
following naming schemes:
• 1 - F/W or BIOS information returned from onboard

devices: enoxxx
• 2 - F/W or BIOS information returned from PCI Express

slot card: ensxxx
• 3 - physical location of the connector (slot address) on

the MB: enpxxx
• 4 – MAC address of the NIC: enx00028a…
• 5 – if everything fails, fall back to the traditional

unpredictable naming scheme: ethN

LNF 26-30/11/2018 II Corso RedHat per sistemisti INFN

Names format

prefix network type
en ethernet
wl wireless LAN

LNF 26-30/11/2018 II Corso RedHat per sistemisti INFN

type hardware type
o<index> on-board device index number

s<slot>[f<function>][d<dev_id>] hotplug slot index number

x<mac> MAC address

[P<domain>]p<bus>s<slot>
[f<function>][d<dev_id>]

PCI location – P<domain>
mentioned only if not null

biosdevname scheme (DELL ws)

Note that unless the system is a DELL system, or biosdevname is
explicitly enabled, the systemd naming scheme will take precedence.

To disable this feature, pass the option
biosdevname=0

on the boot command line; to re-enable ths feature pass the option
biosedevname=1

on the boot command line.

LNF 26-30/11/2018 II Corso RedHat per sistemisti INFN

device old name new name
embedded NIC eth[012…] em[123…]

PCI NIC eth[012…] p<slot>p<eth_port>

Device naming can be controlled…

• by identifying and renaming the network device
Setting the MAC address of a device in an ifcfg file using the
HWADDR directive enables it to be identified by udev; the device
name will be taken from the string given by the DEVICE directive
(left as an exercise).

• by turning off or on biosedvname
Turning off biosdevname disable Consistent Network Device
Naming process – back to good ol’ ethX names.

• by turning off or on systemd/udev naming scheme
You can also supply your own manual naming scheme.

LNF 26-30/11/2018 II Corso RedHat per sistemisti INFN

biosdevname=0

• in /etc/default/grub add net.ifnames=0 and
biosdevname=0 to the GRUB_CMDLINE_LINUX
variable.

• rebuild the /boot/grub2/grub.cfg running the command
grub2-mkconfig –o /boot/grub2/grub.cfg

• modify accordingly the device name by editing the
appropriate ifcfg- file, or by running the command
nmcli connection modify <connName> \

connection.interface-name eth0

• reboot and enjoy…!

LNF 26-30/11/2018 II Corso RedHat per sistemisti INFN

consistent naming scheme

LNF 26-30/11/2018 II Corso RedHat per sistemisti INFN

old naming scheme

LNF 26-30/11/2018 II Corso RedHat per sistemisti INFN

Table of contents

• IPv6 – a fast’n’furious introduction
• network device naming
• configuring network settings: NetworkManager,

nmcli
• ip, ss: what about ifconfig, arp, route, netstat?
• link aggregation
• bridging

LNF 26-30/11/2018 II Corso RedHat per sistemisti INFN

the NetworkManager (nm)

• dynamic network control and (automatic) configuration
daemon providing methods via D-Bus (a standard,
generic inter process communication - IPC - framework)
for querying status information, changing configuration
and dealing with specific trigger events;

• support for traditional ifcfg-<ifname> and network
scripts is maintained - extended functionality (VPN,
bridging, …) via connection profiles.

• it seems you have no longer to disable NetworkManager
(or making interfaces unmanaged) as a first
administration step in order to have linux networks
working consistently 

LNF 26-30/11/2018 II Corso RedHat per sistemisti INFN

nm and the network scripts

network configuration in previous RH/CentOS/… releases used to be carried
out by network scripts (ns), i.e. the script /etc/rc.d/init.d/network and
any other installed scripts it calls/refers to (/etc/sysconfig/network,
/etc/sysconfig/network-scripts/*, …). nm is nowadays intended to
provide/manage the default networking service/configuration, but it can indeed
coexist (and even cooperate, if needed) with network scripts – you may have
both nm and ns enabled at the same time, or disable nm and enable ns once
the network is properly configured and the network configuration is not going to
change (actually not recommended, imho).
During boot process /etc/init.d/network reads through all the ifcfg files
and for each one that has ONBOOT=yes, it checks whether nm is already
starting the DEVICE from that ifcfg file. If nm is starting that device or has
already started it, nothing more is done for that file, and the next ONBOOT=yes
file is checked. If nm is not yet starting that device, the initscripts will continue
with their traditional behavior and call ifup for that ifcfg file.

LNF 26-30/11/2018 II Corso RedHat per sistemisti INFN

nm-settings-ifcfg-rh(5)

NetworkManager is based on the concept of connection
profiles that contain network configuration (…) The
profiles can be stored in various formats. NetworkManager
uses plugins for reading and writing the data.

The ifcfg-rh plugin is used on the Fedora and RHEL
distributions to read/write configuration from/to the
traditional /etc/sysconfig/network-scripts/ifcfg-* files.
Each NetworkManager connection maps to one ifcfg-* file,
with possible usage of keys-* for passwords, route-* for
static IPv4 routes and route6-* for static IPv6 routes.
The plugin currently supports reading and writing
Ethernet, Wi-Fi, InfiniBand, VLAN, Bond, Bridge, and Team
connections. Unsupported connection types (such as WWAN,
PPPoE, VPN, or ADSL) are handled by keyfile plugin (nm-
settings-keyfile(5)). The main reason for using ifcfg-rh
plugin is the compatibility with legacy configurations for
ifup and ifdown (initscripts).

LNF 26-30/11/2018 II Corso RedHat per sistemisti INFN

nm auto-default

By default, nm creates a temporary wired connection for any
Ethernet device that is managed and doesn't have a connection
configured – adding a NIC to a VM tipically ends up with a
temporary DHCP active ‘Wired Connection 1’ for which there is
no configuration file whatsoever. This behavior is controlled by
the parameter no-auto-default in the[main]section of the
NetworkManager configuration file (NetworkManager.conf in
/etc/NetworkManager/). The parameter specify devices for
which nm shouldn't create default wired connection - setting it to
‘*’ (no-auto-default=*) inhibits the creation of the default
connection for every newly created (or activated) network device
(see package NetworkManager-config-server.noarch,
which is intended to be installed by default for server
deployments).

LNF 26-30/11/2018 II Corso RedHat per sistemisti INFN

nm key concepts

nm is based on the concept of connection profiles, or connections: a connection profile
(cp) basically contain network configuration settings for a specific network device. When
nm activates a cp on a network device the configuration will be applied and an active
network connection will be established – a network device can have multiple cp referring
to it, but only one active cp at a time.
The connection profiles are handled by nm via settings service and are exported on D-
Bus (/org/freedesktop/NetworkManager/Settings/<num> objects).

LNF 26-30/11/2018 II Corso RedHat per sistemisti INFN

connection (profile) A specific, encapsulated, independent group of settings
describing all the configuration required to connect to a
specific network. It is referred to by a unique identifier called
the UUID. A connection is tied to a one specific device type,
but not necessarily a specific hardware device. It is composed
of one or more Settings objects.

setting A group of related key/value pairs describing a specific piece
of a connection (profile). Keys are also referred to as
properties.

nm settings

• connection
• 802-1X
• ADSL
• bluetooth
• bond
• bridge
• bridge-port
• CDMA
• DCB
• dummy
• generic
• GSM

• Infiniband
• IPv4
• IPv6
• ip-tunnel
• ppp
• proxy
• serial
• team
• tun
• vlan
• vpn
• …

LNF 26-30/11/2018 II Corso RedHat per sistemisti INFN

nm settings: connection

connection settings – general cp settings

autoconnect boolean Whether or not the connection should be automatically connected
by NetworkManager when the resources for the connection are
available. TRUE to automatically activate the connection, FALSE to
require manual intervention to activate the connection.

interface-name string The name of the network interface this connection is bound to. If not
set, then the connection can be attached to any interface of the
appropriate type (subject to restrictions imposed by other settings).

type string Base type of the connection. For hardware-dependent connections,
should contain the setting name of the hardware-type specific
setting (ie, "802-3-ethernet" or "802-11-wireless" or "bluetooth", etc),
and for non-hardware dependent connections like VPN or otherwise,
should contain the setting name of that setting type (ie, "vpn" or
"bridge", etc).

… … …

LNF 26-30/11/2018 II Corso RedHat per sistemisti INFN

nm settings: ipv6

connection settings – general cp settings

method string IP configuration method. NMSettingIP4Config and
NMSettingIP6Config both support "auto", "manual", and "link-local".

ip6-privacy int32 Configure IPv6 Privacy Extensions for SLAAC, described in
RFC4941. If enabled, it makes the kernel generate a temporary IPv6
address in addition to the public one generated from MAC address
via modified EUI-64.

addr-gen-mode int32 Configure method for creating the address for use with RFC4862
IPv6 Stateless Address Autoconfiguration. The permitted values are:
NM_SETTING_IP6_CONFIG_ADDR_GEN_MODE_EUI64 (0) or
NM_SETTING_IP6_CONFIG_ADDR_GEN_MODE_STABLE_PRIV
ACY (1).

address-data Array of IPv6 addresses. Each address dictionary contains at least
'address' and 'prefix' entries, containing the IP address as a string,
and the prefix length as a uint32.

… … …

LNF 26-30/11/2018 II Corso RedHat per sistemisti INFN

network configuration

you can configure IPv4/v6 networking by:
• interacting with nm:

– nmtui: nm’s text user interface tool
– GNOME GUI: control-center, nm-connection-
editor, nm-applet(s)

– nmcli: nm’s command-line tool
• using ip command (only volatile, i.e. non-

persistent, configuration);
• directly editing ifcfg-* network configuration

files;

LNF 26-30/11/2018 II Corso RedHat per sistemisti INFN

nmtui

LNF 26-30/11/2018 II Corso RedHat per sistemisti INFN

control-center

LNF 26-30/11/2018 II Corso RedHat per sistemisti INFN

nm-connection-editor

LNF 26-30/11/2018 II Corso RedHat per sistemisti INFN

nmcli

• command-line tool for controlling NetworkManager - can
be used both interactively and in batch-mode (scripts);

• works both on in-memory (temporary) and on-disk
(persistent) configuration;

• supports
– command completion (via [TAB] key)
– context-sensitive help
– abbreviations (not recommended in scripts)

• nmcli connection editor has a built-in describe command
that can display description of particular settings and
properties.

LNF 26-30/11/2018 II Corso RedHat per sistemisti INFN

nmcli main help

LNF 26-30/11/2018 II Corso RedHat per sistemisti INFN

nmcli context-sensitive help

LNF 26-30/11/2018 II Corso RedHat per sistemisti INFN

permissions

LNF 26-30/11/2018 II Corso RedHat per sistemisti INFN

Console login!!!
Try a remote login and
recheck permissions…

permissions

LNF 26-30/11/2018 II Corso RedHat per sistemisti INFN

devices & connections

LNF 26-30/11/2018 II Corso RedHat per sistemisti INFN

connections

LNF 26-30/11/2018 II Corso RedHat per sistemisti INFN

connections

LNF 26-30/11/2018 II Corso RedHat per sistemisti INFN

ipv4, ipv6: connection properties
IP4, IP6: active connection properties

creating a connection

LNF 26-30/11/2018 II Corso RedHat per sistemisti INFN

creating a connection

nmcli connection down enp0s8
Connection 'enp0s8' successfully deactivated (D-Bus active path:
/org/freedesktop/NetworkManager/ActiveConnection/5)

nmcli connection add con-name enp0s8-dyn \
ifname enp0s8 type ethernet \
ipv4.method auto

Connection 'enp0s8-dyn' (57c95cb8-3c4a-4c7d-a18f-9d5ca05c3db0)
successfully added.

The new connection becomes active as soon as the nmcli c add command
completes.
Note that the nmcli c down command deactivates a connection without
preventing the connection itself from further auto-activation; use the nmcli
device disconnect to prevent the device from automatically reactivating
further connections without manual intervention.

LNF 26-30/11/2018 II Corso RedHat per sistemisti INFN

creating a connection

LNF 26-30/11/2018 II Corso RedHat per sistemisti INFN

configuring static addresses

nmcli connection add type ethernet \
con-name enp0s3 ifname enp0s3 \
ip4 192.168.100.1 gw4 192.168.200.254

Connection 'enp0s3' (20d7e3be-db21-4317-a013-03b2ba51f1bc)
successfully added.

nm will 1) automatically set its internal parameters ipv4.method to manual
and connection.autoconnect to yes; 2) write out the settings to the
corresponding ifcfg- file.
The same for IPv6 networks:

nmcli connection add type ethernet \
con-name enp0s3 ifname enp0s3 \
ip6 <ipv6Addr> gw6 <ipv6gwAddr>

LNF 26-30/11/2018 II Corso RedHat per sistemisti INFN

modifying a connection

LNF 26-30/11/2018 II Corso RedHat per sistemisti INFN

modifying a connection

nmcli conn mod enp0s3 +ipv4.addresses 192.168.100.80/24
nmcli -f ipv4.addresses,IP4.ADDRESS con show enp0s3
ipv4.addresses: 193.206.157.158/23, 192.168.100.80/24

IP4.ADDRESS[1]: 193.206.157.158/23

nmcli con up enp0s3
Connection successfully activated (D-Bus active path:
/org/freedesktop/NetworkManager/ActiveConnection/4)

nmcli -f ipv4.addresses,IP4.ADDRESS con show enp0s3
ipv4.addresses: 193.206.157.158/23, 192.168.100.80/24

IP4.ADDRESS[1]: 192.168.100.80/24

IP4.ADDRESS[2]: 193.206.157.158/23

Adding a static route:
nmcli con mod enp0s8 +ipv4.routes “<net/mask> <gw>”
*** static routes in /etc/sysconfig/network-scripts/routes-enp0s8

LNF 26-30/11/2018 II Corso RedHat per sistemisti INFN

the connection editor

LNF 26-30/11/2018 II Corso RedHat per sistemisti INFN

the connection editor

LNF 26-30/11/2018 II Corso RedHat per sistemisti INFN

the connection editor – IPv6

LNF 26-30/11/2018 II Corso RedHat per sistemisti INFN

the connection editor – IPv6

LNF 26-30/11/2018 II Corso RedHat per sistemisti INFN

note: exit with [CTRL]-D
DO NOT USE ‘quit’

the connection editor – IPv6

LNF 26-30/11/2018 II Corso RedHat per sistemisti INFN

ip address show

LNF 26-30/11/2018 II Corso RedHat per sistemisti INFN

IPv6 address configuration

LNF 26-30/11/2018 II Corso RedHat per sistemisti INFN

ipv6 unicast-routing
ipv6 dhcp pool MIB_IPV6_POOL
dns-server 2001:760:4211::1
domain-name mib.infn.it

interface Vlan1
description Rete Locale
ipv6 address 2001:760:4211::254/64
ipv6 nd other-config-flag
ipv6 nd router-preference High
ipv6 dhcp server MIB_IPV6_POOL

ciscocca conf snippet

MiB IPv6 wiki

IPv6 tokenized interface ID

LNF 26-30/11/2018 II Corso RedHat per sistemisti INFN

IPv6 tokenized interface identifer support is used for assigning well-known
host-part addresses to nodes whilst still obtaining a global network prefix from
Router Advertisements (RA). The primary target for tokenized identifiers are
server platforms where addresses are usually manually configured, rather than
using DHCPv6 or SLAAC. By using tokenized identifiers, hosts can still
determine their network prefix by use of SLAAC, but more readily be
automatically renumbered should their network prefix change [1]. Tokenized
IPv6 Identifiers are described in the draft [1]: <draft-chown-6man-tokenised-
ipv6-identifiers-02>.

[ssire]$ host useven.mib.infn.it
useven.mib.infn.it has address 193.206.157.158
useven.mib.infn.it has IPv6 address 2001:760:4211::113

network prefix
token

IPv6 token @ work - nmcli

LNF 26-30/11/2018 II Corso RedHat per sistemisti INFN

IPv6 token @ work - ip

LNF 26-30/11/2018 II Corso RedHat per sistemisti INFN

nmcli on laptops

LNF 26-30/11/2018 II Corso RedHat per sistemisti INFN

nmcli on laptops – wifi support

LNF 26-30/11/2018 II Corso RedHat per sistemisti INFN

NM tips & tricks

lightweight environments (or if you really don’t trust NM…): if your
configuration is mainly static and you don’t want your system to react to
dbus or udev events do not disable NM but just use the

configure-and-quit = true

option - with this in place NetworkManager will carry out the
configuration of the interface and then gracefully exit leaving the
network up as desired and notifying systemd that networking is up but
without the NM daemon left running in the background listening for, and
responding to, udev, dbus or similar events.

LNF 26-30/11/2018 II Corso RedHat per sistemisti INFN

$ cat /etc/NetworkManager/conf.d/conf-and-quit.conf
[main]
configure-and-quit = true

NM tips & tricks – cont’d

automatically respond to configuration files changes (somewhat
dangerous): the default behaviour for NetworkManager is to only
respond to changes to configuration files on a restart or when directed
to through nmcli conn reload. However, if a more dynamic
response to changes to the files is preferred it is possible to have NM
monitor all the configuration files and have it immediately make
changes to network state from this by using the option

monitor-connection-files = true

with this option as any changes to the files will be immediately applied
which could quite easily break network connectivity if the wrong thing is
put in place.

LNF 26-30/11/2018 II Corso RedHat per sistemisti INFN

$ cat /etc/NetworkManager/conf.d/monitor-files.conf
[main]
monitor-connection-files = true

Table of contents

• IPv6 – a fast’n’furious introduction
• network device naming
• configuring network settings: NetworkManager,

nmcli
• ip, ss: what about ifconfig, arp, route, netstat?
• link aggregation
• bridging

LNF 26-30/11/2018 II Corso RedHat per sistemisti INFN

ip – man page

LNF 26-30/11/2018 II Corso RedHat per sistemisti INFN

ip vs ifconfig/route/…

net-tools (old) Iproute (new)
ifconfig ip link (show/up/down)

ip addr (show/add/delete)

route ip route

ip rule

arp ip neighbour

ip ntable

ipmaddr ip maddress

ip mroute

ip mrule

LNF 26-30/11/2018 II Corso RedHat per sistemisti INFN

Useful flags: -4|-6|-D => protocol family: inet, inet6, DECNet!!!
-stats => output more statistics information
-batch => read command from file

network configuration with ip
(non persistent!!)

ip addr show

ip link show

ip address add 192.168.100.80/24 dev enp0s3

ip address del 192.168.100.80/24 dev enp0s3

ip link set [dev] em1 down

ip link set [dev] em2 up

ip link set [dev] em1 mtu 9000

ip neigh show

ip neigh add 192.168.100.81 lladdr 0:2:4:1:3:5 dev em3

ip neigh del 192.168.100.81 dev em3

ip route add 192.168.100.0/24 dev em1

ip route add default via 193.206.156.254

LNF 26-30/11/2018 II Corso RedHat per sistemisti INFN

ip l, ip r, ip n

LNF 26-30/11/2018 II Corso RedHat per sistemisti INFN

ss: socket statistics

LNF 26-30/11/2018 II Corso RedHat per sistemisti INFN

ss usage examples

General syntax:
$ ss [options] [FILTER]
FILTER := [state STATE-FILTER] [EXPRESSION]

STATE-FILTER allows to construct arbitrary set of states to match (established, syn-sent,
syn-recv, time-wait, listen, …)

Display all TCP IPv4/IPv6 (-4|-6) listening sockets:
$ ss –tl

$ ss –t state listening

Display all established ssh incoming/outgoing connections:
$ ss -o state established '(dport = :ssh or sport = :ssh)'

List all the TCP sockets in all TCP state for outgoing connections to http/https port on
192.84.138/24 network, and look at their timers:
$ ss -o state all '(dport = :http or dport = :https)' \

dst 192.84.138/24

LNF 26-30/11/2018 II Corso RedHat per sistemisti INFN

Table of contents

• IPv6 – a fast’n’furious introduction
• network device naming
• configuring network settings: NetworkManager,

nmcli
• ip, ss: what about ifconfig, arp, route, netstat?
• link aggregation
• bridging

LNF 26-30/11/2018 II Corso RedHat per sistemisti INFN

link aggregation

The purpose of the Team project is to provide a mechanism to team multiple
NICs (ports) into one logical one (teamdev) at L2 layer. The process is called
"channel bonding", "Ethernet bonding", "channel teaming", "link aggregation",
etc., and aims to provide a logical link with higher throughput, or to provide
redundancy. This is already implemented in the Linux kernel by the bonding
driver. The main thing to realize is that the Team project is not trying to
replicate or mimic the bonding driver. What it does is solve the same problem
using a different approach. Therefore, for example, the way Team is configured
differs dramatically from the way bonding is. Team has many advantages over
Bonding. These will be described later in this text.
An example setup might look like this. Team softdev Linux driver instance is
netdev called team0. It has two ports: eth0 and eth1. team0 has an assigned IP
address X. Note that eth0 and eth1 do not have an IP assigned. It would not
make sense because as a part of team0, the Team softdev Linux driver collects
all received traffic and "changes" it so that it appears to be coming from team0.
More info about this later in the text.

From libteam Team project introduction

LNF 26-30/11/2018 II Corso RedHat per sistemisti INFN

Team components

• Team kernel driver: very slim, implements all things which should be done
fast, mainly transmit and receive packet (skbs – socket buffers) flows.

• Team lib (teamlib): uses libnl and its primary purpose is to do userspace
wrapping of Team Netlink communication (nl: kernel <-> userspace
communication).

• teamd: Team daemon. It runs as a daemon and one instance of teamd
works with one instance of Team softdev Linux driver (one team netdev, for
example team0). The purpose is to implement various logic of Team's
behavior, from the most basic ones such as round-robin, to more complex
such as active-backup and load-balancing. The logic is implemented in
teamd parts called "runners". It also initializes link-watchers and D-Bus
interface; takes care of port addition and removal and relative event
handling, …

• teamdctl: provides a wrapper for control API using it to monitor and control
teamd runtime.

LNF 26-30/11/2018 II Corso RedHat per sistemisti INFN

teaming modes

• broadcast - Basic mode in which all packets are sent via all available ports.
• roundrobin - Basic mode with very simple transmit port-selecting algorithm

based on looping around the port list. This is the only mode able to run on
its own without userspace interactions.

• random - Basic mode similar to the previous one. Transmit port is selected
randomly for each outgoing skb.

• activebackup - In this mode, only one port is active at a time and able to
perform transmit and receive of skb. The rest of the ports are backup ports.
Mode exposes activeport option through which userspace application can
specify the active port.

• loadbalance - A more complex mode used for example for LACP and
userspace controlled transmit and receive load balancing. LACP protocol is
part of the 802.3ad standard and is very common for smart switches
(required for this mode to work correctly).

LNF 26-30/11/2018 II Corso RedHat per sistemisti INFN

link-watchers

link-watchers serve for link monitoring purposes. Depending on the particular
type they use different methods to find out if a port is capable of data transfers.
In other words "if the link is up".
Following types are supported:
• ethtool - Uses Libteam lib to get port ethtool state changes.
• arp_ping - ARP requests are sent through a port. If an ARP reply is

received, the link is considered to be up. Target IP address, interval and
other options can be setup in teamd config.

• nsna_ping - Similar to the previous, only it uses the IPv6 Neighbour
Solicitation and Neighbour Advertisement mechanism. This is an alternative
to arp_ping and becomes handy in pure-IPv6 environments.

Either one link-watch is set for all ports or each port can have its own link-
watch. User can also specify multiple link-watchers used at the same time. In
that case, link is up if any of the link-watchers reports the link up.

LNF 26-30/11/2018 II Corso RedHat per sistemisti INFN

runners

Runners determine the behaviour of the Team device. They operate using the kernel
Team mode they want. Runners watch for port link state changes (propagated by the
selected link-watch) and react to that. They may implement other functionality as well.
The following runners can be used (Team softdev Linux driver modes are stated in
parenthesis):
• broadcast (broadcast) - Does almost nothing because it only says to put teamdev into

broadcast mode.
• roundrobin (roundrobin) - Does almost nothing because it only says to put teamdev

into roundrobin mode.
• random (random) - Does almost nothing because it only says to put teamdev into

roundrobin mode.
• activebackup (broadcast) - Watches for link changes and selects active port to be

used for data transfers. Each port can be configured to have its priority and to be
"sticky" or not. Being "sticky" here means to not be de-activated even if a port with a
better priority gains its link.

• loadbalance (loadbalance) - To do passive/active load balancing.
• lacp (loadbalance) - Implements 802.3ad LACP protocol.

LNF 26-30/11/2018 II Corso RedHat per sistemisti INFN

teaming vs bonding

• teaming has a small(er) kernel module which implements fast
handling of packets flowing through your teamed interfaces

• support for IPv6 (NS/NA) link monitoring
• capable of working with D-Bus and Unix Domain Sockets (the

default)
• it provides an extensible and scale-able solution for your teaming

requirements
• load balancing for LACP support
• full user-space runtime control and NM integration
• multiple-link monitoring setup
• port prioritization in activebackup mode

LNF 26-30/11/2018 II Corso RedHat per sistemisti INFN

setting up a team device

LNF 26-30/11/2018 II Corso RedHat per sistemisti INFN

adding master team0 dev/conn

LNF 26-30/11/2018 II Corso RedHat per sistemisti INFN

team0 initial status: IPv4

LNF 26-30/11/2018 II Corso RedHat per sistemisti INFN

team0 initial status: IPv6

LNF 26-30/11/2018 II Corso RedHat per sistemisti INFN

configure team0 IPv4 addresses

LNF 26-30/11/2018 II Corso RedHat per sistemisti INFN

adding slave devs/conns

LNF 26-30/11/2018 II Corso RedHat per sistemisti INFN

team0 status after init

LNF 26-30/11/2018 II Corso RedHat per sistemisti INFN

reload team0 connection

LNF 26-30/11/2018 II Corso RedHat per sistemisti INFN

DAD failed…?

LNF 26-30/11/2018 II Corso RedHat per sistemisti INFN

Unless the exclusive content describes a magic
workaround it seems that a switch supporting static
LAG (Link Aggregation) at least is required in order
for DAD to work properly, and for IPv6 to work at
all. As far as IPv6 is concerned a dumb switch (TP-
Link TL-SG108, 8x10/100/1000) only supports
smoothy activebackup mode; a DELL N1548
(48x10/100/1000+4) supports every teamd mode
(lacp too). On the other hand activebackup mode
isn’t supported by LAG ports, but seems to work
fine even between different switches (dumb, smart,
dumb/smart…).

NIC teaming test setup

LNF 26-30/11/2018 II Corso RedHat per sistemisti INFN

TP-LINK TL-SG108 (~30 €…)
• 8 RJ45 10/100/1000

DELL N1548
• 48 RJ45 10/100/1000
• 4 10 GbE SFP+ ports
• LAG (static/dynamic) supported

configure another runner

LNF 26-30/11/2018 II Corso RedHat per sistemisti INFN

team0 state & config dump

LNF 26-30/11/2018 II Corso RedHat per sistemisti INFN

activebackup @ work

LNF 26-30/11/2018 II Corso RedHat per sistemisti INFN

After the em1 up->down transition em2 becomes active port and doesn’t change
status even when em1 goes up again.

ifcfg files

LNF 26-30/11/2018 II Corso RedHat per sistemisti INFN

DEVICE=team0
PROXY_METHOD=none
BROWSER_ONLY=no
BOOTPROTO=none
DEFROUTE=yes
IPV4_FAILURE_FATAL=no
IPV6INIT=yes
IPV6_AUTOCONF=yes
IPV6_DEFROUTE=yes
IPV6_FAILURE_FATAL=no
IPV6_ADDR_GEN_MODE=stable-privacy
NAME=team0
UUID=800f76cd-277a-465e-a5a4-f9bc23ccfefb
ONBOOT=yes
DEVICETYPE=Team
IPADDR=212.189.204.210
PREFIX=24
GATEWAY=212.189.204.254
DNS1=212.189.204.2
DOMAIN=mib.infn.it
TEAM_CONFIG="{\"runner\": {\"name\":\"activebackup\"}}"

NAME=team-slave-em1
UUID=43efa824-5608-4aeb-afd8-
22f1b14ff674
DEVICE=em1
ONBOOT=yes
TEAM_MASTER=team0
DEVICETYPE=TeamPort

ifcfg-team0 ifcfg-team-slave-em1

LAG performances?

Achieving 450 MB/s Network File Transfers Using Linux Bonding (2014)

LNF 26-30/11/2018 II Corso RedHat per sistemisti INFN

If You Like Bonding, You Will Love Teaming (2014)

http://louwrentius.com/achieving-450-mbs-network-file-transfers-using-linux-bonding.html
https://rhelblog.redhat.com/2014/06/23/team-driver/

undocumented (new?) feature

LNF 26-30/11/2018 II Corso RedHat per sistemisti INFN

Note: it seems the same holds for bonds and bridges too (i.e.: no more
team-slave or bond-slave or bridge-slave devices, but the old syntax is
still working – linux mysteries )

undocumented feature – cont’d

LNF 26-30/11/2018 II Corso RedHat per sistemisti INFN

Table of contents

• IPv6 – a fast’n’furious introduction
• network device naming
• configuring network settings: NetworkManager,

nmcli
• ip, ss: what about ifconfig, arp, route, netstat?
• link aggregation
• bridging

LNF 26-30/11/2018 II Corso RedHat per sistemisti INFN

software bridges

• bridging code in Linux has been around for quite
a long time, and implements a stable, robust and
fully featured level-2 S/W switch (supporting
STP, FDB, …) whose performances are quite
reasonable (~6 Gbps throughput on 1518 bytes
long UDP frames between two dual Xeon E5-
2407 – 8 cores total - equipped with 10 GbE
Intel 82599 chips and connected via a IBM blade
G8124 switch – almost 3 cores used for IRQ
handling, kernel and user space computations).

LNF 26-30/11/2018 II Corso RedHat per sistemisti INFN

bridge manipulation tools

• brctl (the old faithful)
– # brctl addbr BR0

– # brctl addif BR0 eth0

– # brctl showmacs BR0

• iproute2
– # ip link add name BR0 type bridge

– # ip link set BR0 up

– # ip link set eth0 up

– # ip link set eth0 master BR0

– # bridge fdb

• NetworkManager: nmtui, nm-connection-editor, nmcli

LNF 26-30/11/2018 II Corso RedHat per sistemisti INFN

creating a bridge with nmcli

nmcli connection add type bridge \
con-name bridge0 ifname bridge0 \

ipv4.method manual ipv4.addresses 212.189.204.210/24

nmcli connection modify ip4.gateway 212.189.204.254 \

ipv4.dns 212.189.204.2 ipv4.dns-search ’mib.infn.it’

nmcli con add type bridge-slave con-name bridge0p2 \
ifname em2 master bridge0

nmcli con add type bridge-slave con-name bridge0p1 \

ifname em1 master bridge0

nmcli connection up bridge0

LNF 26-30/11/2018 II Corso RedHat per sistemisti INFN

running bridge

LNF 26-30/11/2018 II Corso RedHat per sistemisti INFN

bridge info

LNF 26-30/11/2018 II Corso RedHat per sistemisti INFN

ifcfg files

LNF 26-30/11/2018 II Corso RedHat per sistemisti INFN

DEVICE=bridge0
STP=yes
BRIDGING_OPTS=priority=32768
TYPE=Bridge
PROXY_METHOD=none
BROWSER_ONLY=no
BOOTPROTO=none
IPADDR=212.189.204.210
PREFIX=24
DEFROUTE=yes
IPV4_FAILURE_FATAL=no
IPV6INIT=yes
IPV6_AUTOCONF=yes
IPV6_DEFROUTE=yes
IPV6_FAILURE_FATAL=no
IPV6_ADDR_GEN_MODE=stable-privacy
NAME=bridge0
UUID=175c951d-50d1-42f5-aced-02edb6cf42e8
ONBOOT=yes
GATEWAY=212.189.204.254
DNS1=212.189.204.2
DOMAIN=mib.infn.it
IPV6_PRIVACY=rfc3041

TYPE=Ethernet
NAME=bridge0p1
UUID=d72bebf7-5c8f-48fd-8feb-
dce9853aa24b
DEVICE=em1
ONBOOT=yes
BRIDGE=bridge0

ifcfg-bridge0 ifcfg-bridge0p1

a real world example

bifrost.mib.infn.it: dual auth (X.509/LDAP) VPN server with direct
access to remote LAN level-2

LNF 26-30/11/2018 II Corso RedHat per sistemisti INFN

old-style config file

start_br()
{

create TAP devices

for t in $tap

do

$OPENVPN --mktun --dev $t >/dev/null 2>&1

[$? -ne 0] && ERR=1

done

create bridge instance & add interfaces

$BRCTL addbr $br >/dev/null 2>&1

[$? -ne 0] && ERR=1

$BRCTL addif $br $eth >/dev/null 2>&1

[$? -ne 0] && ERR=1

for t in $tap

do

$BRCTL addif $br $t >/dev/null 2>&1

[$? -ne 0] && ERR=1

done

configure bridge interfaces

for t in $tap

do

$IFCONFIG $t $IP_ZERO promisc up

[$? -ne 0] && ERR=1

done

$IFCONFIG $eth $IP_ZERO promisc up

[$? -ne 0] && ERR=1

if [-n "$br_ip"]

then

$IFCONFIG $br $br_ip netmask $br_nm
broadcast $br_bc up

else

$IFCONFIG $br up

fi

[$? -ne 0] && ERR=1

do * not * make iptables see bridged traffic

echo 0 >

/proc/sys/net/bridge/bridge-nf-call-iptables

}

LNF 26-30/11/2018 II Corso RedHat per sistemisti INFN

it works…

LNF 26-30/11/2018 II Corso RedHat per sistemisti INFN

	 II Corso RedHat per sistemisti INFN
	Table of contents
	IPv6 addressing
	IPv6 address representation
	IPv6 addressing model
	Topological scope
	Target scope
	IPv6 addresses/prefixes examples
	IPv6 multicast addresses examples
	IPv6 address allocation
	IPv6 host-required addresses
	IPv6 address configuration options
	Neighbour Discovery Protocol
	NDP messages
	SLAAC flowchart
	IPv6 addresses in linux
	DAD @ work
	real world IPv6 addressing schemes
	Table of contents
	Consistent network device naming
	Naming schemes hierarchy
	Names format
	biosdevname scheme (DELL ws)
	Device naming can be controlled…
	biosdevname=0
	consistent naming scheme
	old naming scheme
	Table of contents
	the NetworkManager (nm)
	nm and the network scripts
	nm-settings-ifcfg-rh(5)
	nm auto-default
	nm key concepts
	nm settings
	nm settings: connection
	nm settings: ipv6
	network configuration
	nmtui
	control-center
	nm-connection-editor
	nmcli
	nmcli main help
	nmcli context-sensitive help
	permissions
	permissions
	devices & connections
	connections
	connections
	creating a connection
	creating a connection
	creating a connection
	configuring static addresses
	modifying a connection
	modifying a connection
	the connection editor
	the connection editor
	the connection editor – IPv6
	the connection editor – IPv6
	the connection editor – IPv6
	ip address show
	IPv6 address configuration
	IPv6 tokenized interface ID
	IPv6 token @ work - nmcli
	IPv6 token @ work - ip
	nmcli on laptops
	nmcli on laptops – wifi support
	NM tips & tricks
	NM tips & tricks – cont’d
	Table of contents
	ip – man page
	ip vs ifconfig/route/…
	network configuration with ip�(non persistent!!)
	ip l, ip r, ip n
	ss: socket statistics
	ss usage examples
	Table of contents
	link aggregation
	Team components
	teaming modes
	link-watchers
	runners
	teaming vs bonding
	setting up a team device
	adding master team0 dev/conn
	team0 initial status: IPv4
	team0 initial status: IPv6
	configure team0 IPv4 addresses
	adding slave devs/conns
	team0 status after init
	reload team0 connection
	DAD failed…?
	NIC teaming test setup
	configure another runner
	team0 state & config dump
	activebackup @ work
	ifcfg files
	LAG performances?
	undocumented (new?) feature
	undocumented feature – cont’d
	Table of contents
	software bridges
	bridge manipulation tools
	creating a bridge with nmcli
	running bridge
	bridge info
	ifcfg files
	a real world example
	old-style config file
	it works…

