The sound of neutrinos

ERLANGEN CENTRE For Astroparticle Physics

Carsten Richardt 11th ICATPP Conference October 6th, 2008

Friedrich-Alexander-Universität Erlangen-Nürnberg

Outline

- Motivation
- Comparison of acoustic to optical detection
- Sound generation
- Experiments
 - Background and medium properties
 - Direction and source position reconstruction
 - Flux upper limit
- Summary

Astro-particle physics with neutrinos

Neutrino Oscillations: Direction, Energy, Flavor

Why neutrinos?

Neutrinos, unlike protons, are not deflected by magnetic fields Track points back to source

Ultra high energy cosmic rays

Neutrinos from GZK cutoff should exit Low Flux \rightarrow large detector volumes

Differences of optical and acoustic neutrino detection hydrophone optical array cascade Cherenkov cone μ acoustic pressure waves

Cherenkov detector

3D Array 60 Meter attenuation length Medium: water, ice Energy threshold: > 100 GeV

Acoustic detector

3D Array 1000 Meter attenuation length Medium: water, ice, salt Energy threshold: > 2 EeV

The thermo acoustic model by Askarian

Energy deposition causes local temperature fluctuation resulting in a change in pressure

Pressure pulse of a neutrino induced cascade

ERLANGEN CENTRE FOR ASTROPARTIC

Experiments in ice and water

ACORNE

Rona hydrophone array, a submarine ranging array in North-West Scotland used by the ACORNE experiment

7 hydrophones read out continuously

Lake Baikal

- Tetrahedral antenna
- 4 hydrophones
- 150 meter depth

ERLANGEN CENTRE FOR ASTROPARTICLE PHYSICS

ONDE

ERLANGEN CENTRE FOR ASTROPARTICLE PHYSICS

SAUND

SAUND:

7 hydrophones at 1600 m depth 1.5 km spacing

SAUND II: 49 hydrophones 20 km x 50 km area Spacing of 3 to 5 km

Background and medium properties

Noise distribution in dependence of wind speed

ERLANGEN CENTRE FOR ASTROPARTIC

Correlation with Weather Conditions

Noise correlation measured by the AMADEUS detector

Weather conditions measured at Hyères airport, about 30km north of ANTARES site

- Correlation coefficient ~ 80%
- Deep-sea noise dominated by sea surface agitation
- Hydrophone noise integrated from 1 to 50 kHz

Correlation with Weather Conditions

Similar behavior seen by the ONDE detector Wind speed measured 20 km away 155 days (2005, daily average)

SPATS – speed of sound in ice

Sound velocity measurements of Pressure and shear waves

Agreement with previous

New results for greater depths

450

500

R. Abbasi et al. 2009

SPATS – attenuation length in ice

Direction and source position reconstruction

ONDE – sea mammal tracking

- Detection range > 40 km
- Tracking of sperm whales
- Monitor
 - Presence
 - Routes

Direction reconstruction using time delays between hydrophones

Depth reconstruction using reflection on surface

Lake Baikal – detection of neutrino like pulses

Reconstructed zenith angle for neutrino-like pulses

AMADEUS – source tracking

ERLANGEN CENTRE FOR ASTROPARTICLE PHYSICS

AMADEUS - Source direction distribution

- Direction reconstruction for one story
- All types of transient signals included, sea mammals, ships etc.
- Origin points north to horizon

AMADEUS - Source direction distribution

ACORNE – source location reconstruction

- Reconstruction by triangulation of signals
- Boat was successfully reconstructed

ACORNE – energy dissipation

- Signal energy decreases with distance (1/r²)
- slope = -2.1 ± 0.23 .

SAUND – detected neutrino like signals

- Reconstructed bipolar and Monte Carlo events
- No events in fiducial volume
- Fiducial volume given by signal geometry

Flux upper limit for neutrinos

ACORNE (RONA) / SAUND - Upper limit

Upper limits have been calculated for the RONA array and the SAUND detector

Summary

33

- Number of experiments investigating acoustic particle detection
- Background conditions in water correlate with weather
- Direction reconstruction possible using local clusters
- Source location reconstruction possible
- Also applicable for monitoring sea life
- Upper flux limit calculated

