Study of neutrino interactions over 200 keV lower threshold

- @ open problems in the solar neutrinos
- @ first results obtained by Borexino
- @ what we can expect in the near future
- @ study of the geo-neutrinos

Current MSW-LMA model-

Metallicity

Solar surface abundances are determined from analyses of photospheric atomic and molecular spectral lines.

The associated solar atmosphere modeling has been done in one dimension in a time-independent hydrostatic analysis that incorporates convection (GS98)-good agreement with helioseis.

A much improved 3D model of the solar atmosphere has been developed, which better reproduces line profiles and brings the Solar abundances into better agreement with other stars in the neighborhood (AGS05)-bad agreement with helioseismology

Due to this improved analysis, the solar surface contains 30-40% less carbon, nitrogen, oxygen, neon and argon than previously believed.

Source	BPS_{highZ}	BPS_{lowZ}	Difference
pp	$5.97(1 \pm 0.007)$	$6.04(1 \pm 0.007)$	0.07 ± 0.06
pep	$1.41(1 \pm 0.011)$	$1.45(1 \pm 0.011)$	0.04 ± 0.02
hep	$7.90(1 \pm 0.16)$	$8.22(1 \pm 0.16)$	0.30 ± 1.70
$^{7}\mathrm{Be}$	$5.08(1 \pm 0.05)$	$4.55(1 \pm 0.05)$	0.53 ± 0.35
^{8}B	5.95((1 + 0.10))	$4.72(1 \ ^{+0.10}_{-0.09})$	1.2 ± 0.8
^{13}N	$2.93(1 \ _{-0.13}^{+0.15})$	$1.93(1 \ _{-0.13}^{+0.15})$	1.0 ± 0.6
^{15}O	$2.20(1 \ ^{+0.17}_{-0.14})$	$1.37(1 \ _{-0.14}^{+0.17})$	0.8 ± 0.4
¹⁷ F	$5.82(1 + 0.17)_{-0.14})$	$3.25(1 \ ^{+0.17}_{-0.14})$	2.6 ± 1.2

Units: 10¹⁰ (pp), 10⁹ (⁷Be), 10⁸ (pep, ¹³N, ¹⁵O), 10⁶ (⁸B, ¹⁷F), 10³ (hep) cm⁻², s⁻¹

Precise measurements of the Solar neutrino Fluxes can help in fixing Z/X

Gianpaolo Bellini Universita' degli Studi and INFN - Milano

ICATPP 2009

Filled detector

PC filling completed May 15th, 2007

BOREXINO

INFI

Gianpaolo Bellini Universita' degli Studi and INFN - Milano

ICATPP 2009

I T C C O I U S	Matarial		Dadianurity
	Material	of	levels in the Bx
		the unpurified materials	scintillator
¹⁴ C	scintillator	¹⁴ C/ ¹² C<10 ⁻¹²	${}^{14}C/{}^{12}C \cong 2 \cdot 10^{-18}$
²³⁸ U, ²³² Th equiv.	Hall C duststainless. steelnylon	~1 ppm ~1ppb ~1ppt	$10^{-17} - 10^{-18} g/g$
K _{nat}	Hall C dust	~1 ppm	$< 10^{-14} g/g$
²²² Rn	external air.air underground	~20 Bq/m ³ ~40-100 Bq/m ³	$<1 \ \mu Bq/m^3$
⁸⁵ Kr ³⁹ Ar	in N ₂ for stripping	~1.1 Bq/m ³ ~13 mBq/m ³	$\sim 0.16 \ mBq/m^3$ $\sim 0.5 \ mBq/m^3$
- ²²² Rn - ²³⁸ U, ²³² Th equiv. ICATPP 2009	LNGS - Hall C water Gianpaolo Bellini Univ	~50 Bq/m ³ ~10 ⁻¹⁰ g/g ersita' degli Studi and INFN - N	$\frac{\text{Water}}{\sim 30 \ \mu Bq/m^3}$

Day night asymmetry for ⁷Be solar neutrinos

	Threshold	Φ_{8B}^{ES}
	[MeV]	$[10^6 \text{ cm}^{-2} \text{ s}^{-1}]$
SuperKamiokaNDE I [8]	5.0	$2.35 \pm 0.02 \pm 0.08$
SuperKamiokaNDE II [9]	7.0	$2.38 \pm 0.05 \substack{+0.16 \\ -0.15}$
SNO D_2O [7]	5.0	$2.39^{+0.24}_{-0.23}$
SNO Salt Phase [6]	5.5	$2.35 \pm 0.22 \pm 0.15$
SNO Prop. Counter [10]	6.0	$1.77^{+0.24}_{-0.21}{}^{+0.09}_{-0.10}$
Borexino	5.0	$2.75{\pm}0.54{\pm}0.17$
Borexino	2.8	$2.65{\pm}0.44{\pm}0.18$

Preliminary measurement of the ratio between the survival probabilities in vacuum and in matter

 $P_{ee}(^{7}Be)/P_{ee}(^{8}B)=$

 1.60 ± 0.33

ICATPP 2009

Neutrino Magnetic Moment

$$\left(\frac{d\sigma}{dT}\right)_W = \frac{2G_F^2 m_e}{\pi} \left[g_L^2 + g_R^2 \left(1 - \frac{T}{E_\nu}\right)^2 - g_L g_R \frac{m_e T}{E_\nu^2}\right]$$

EM current affects cross section σ Spectral shape sensitive to μ_{ν} Sensitivity enhanced at low energies ($\sigma \approx I/T$)

$\begin{bmatrix} g_L & g_R \end{bmatrix}$	E_{ν}	gLgh	E_{ν}^2
$-\left(\frac{d\sigma}{dT}\right)_{EM}$	$= \mu_{\nu}^2 \frac{\pi \alpha_{em}^2}{m_e^2}$	$\left(\frac{1}{T}\right)$	$\left(\frac{1}{E_{\nu}}\right)$

Estimate	Source	$10^{-11}\mu_B$
		90% C.L.
Superk	Solar v from ⁸ B	<11
GEMMA	\overline{v}_{e} from reactors	<3.2
Borexino	Solar v from ⁷ Be	<5.4

ICATPP 2009

moment

Effective magn.

We can write:

 $\mu_{eff}^{2} = P_{ee}^{-} \cdot \mu_{e}^{2} + (1 - P_{ee}^{-})(\cos^{2}\theta_{23}^{-} \cdot \mu_{\mu}^{2} + \sin^{2}\theta_{23}^{-} \cdot \mu_{\tau}^{2})$

where P_{ee} =0.552±0.016 is the survival probability at Earth for ⁷Be neutrinos at 0.863 MeV, sin² θ_{23} = 0.5^{+0.07}_{-0.06} and μ_x are the neutrino magnetic moments.

Present limits on the neutrino magnetic moments are: $\mu_e < 3.2 \times 10-11 \ \mu\text{B}$ by GEMMA (elastic scattering) $\mu_\mu < 68 \times 10-11 \ \mu\text{B}$ by LSND (elastic scattering) $\mu_\tau < 39000 \times 10-11 \ \mu\text{B}$ by DONUT (elastic scattering)

New Borexino limits:
$$\mu_{\mu} < 12 \cdot 10^{-11} \mu_{B}$$

 $\mu_{\tau} < 12.5 \cdot 10^{-11} \mu_{B}$

Solid lines for $\mu_e=0$ with uncertainties on P_{ee} and θ_{23} . Dashed line for $\mu_e=3.2\times10^{-11}\,\mu_B$.

Gianpaolo Bellini Universita' degli Studi and INFN - Milano

ICATPP 2009

Pauli principle violation- 350 days of data taking

	Channel	Detectable En. (MeV)	Borexino τ _{lim} ,γ	Previous limits
	$^{12}C \rightarrow ^{12}C^{NP} + \gamma$	16.4-19.	2.6·10 ³¹	4.2·10 ²⁴ NEMO-II
-	$^{12}C \rightarrow ^{11}B^{NP} + p$	4.6-8.3	7.1·10 ²⁹	1.7.10 ²⁵ NaI Elegant 1.9 10 ²⁵ NaI DAMA
	¹² C→ ¹¹ C ^{NP} +n (n capture with 2.2 MeV $γ$ emission)	recoil proton + 2.2	3.4·10 ³⁰	1.0·10 ²⁰ Kishimoto et al (natural Pb)
	$^{12}C \rightarrow ^{12}N^{NP} + e^{-}$	18.9 lower end point	3.1·10 ³⁰	3.1·10 ²⁴ NEMO II 9.5 ·10 ²⁷ LSD ⁽¹² C)
11	$^{12}C \rightarrow ^{12}B^{NP} + e^+ + v_e$	16.8 lower end point	2.1·10 ³⁰	2.6·10 ²⁴ NEMO-II

To compare the results for different nuclei and different energy threshold one have to estimate the rate of normal transitions.

ICATPP 2009

We can calculate the limits δ^2 of relative strenght of non Paulian transitions to the normal one. In this way we can compare the experimental limits on lifetime obtained for different nuclei and atoms. In the case of the non Paulian transitions in ¹²C nuclei we obtain:

	decay	δ ²	Previous limit	
	γ	2.2 10 ⁻⁵⁷	2.3 10-57	Kamiokan de (¹⁶ O)
/	N(n,p)	9.6 10 ⁻⁶⁰	3.5 10 ⁻⁵⁵	DAMA (NaI)
1	(e,v)	2.1 10-35	6.5 10-34	LSD (¹² C)
ICA	ICATPP 2009 Giannaple Bellini Universita' degli Studi and INEN - Milano			

Conclusion after 192 days

- First direct experimental evidence of the vacuum regime in the neutrino oscillation at very low energy: measurement of the ⁷Be flux (0.862 MeV) and good limit on the pp v flux. In this way a first validation of the MSW-LMA model in the vacuum regime has been obtained within a total error in the range of 10%.
- 2. First preliminary determination of the ratio between the v_e survival probabilities in vacuum and in matter: 1.6 ± 0.33 (from the ⁷Be flux and the ⁸B flux, this last measured with a threshold down to 2.8 MeV).
- 3. Measurement of the day/night effect for v at very low energy:

 $ADN = \frac{N-D}{N+D} = 0.02 \pm 0.04$ as predicted by the MSW-LMA model.

4. Good limits for CNO flux, Pauli principle violation, neutrino magnetic moment

What Next

- A. Measurement of the ⁷Be flux with a total error ≤5% (hopefully 3%): final validation of the MSW-LMA model; important insight for the Standard Solar Model metallicity puzzle and stronger limits on the pp flux and CNO.
- B. Possible direct measurement of the pp flux in the window:190-230 keV
- C, Study of the pep region (energy spectrum in the range 0.9-1.5 MeV) with the suppression of the ¹¹C muon produced.
- D. Determination of the survival probability ratio, day/night effect, etc. with strongly reduced errors.
- E. Measurements of the geo-neutrinos (the Gran Sasso region is especially favored due to the low background of reactor \overline{v}_e)
- F. Better limits for rare phenomena: v magnetic moment, Pauli Principle violation, electron decay (e->n+g).

ICATPP 2009

Calibration campaigns 2008-2009

On-axis and off -axis

- Rn source: position reconstruction (FV definition), detector response as function of the position
- Gamma source (8 sources from 122 keV to 1.4 MeV): energy scale
- AmBe source: FV at high energies , proton recoil calibrations (for antineutrino)

•Laser diffuser: check PMT alignment

Study of pep and CNO fluxes

¹¹C and neutrons after muons

Still in progress

Geoneutrinos in Borexino

 good tagging: inverse beta decay

$$\overline{v_e} + p \rightarrow e^+ + n$$

$$n + p \rightarrow d + \gamma (2.2 \text{ MeV})$$

main background: - reactors v
_e;

 - (α,n), (γ,n), fast neutrons (γ and n from
 ext.backg); negligible due the following tools: p/β discrimination;
 p recoil energy (AmBe source calib.)

ICATPP 2009

Antineutrino fluxes in the various sites

European Reactors (using IAEA database)

Expected signal \overline{v}_e in Borexino (1 year of data taking)

MeV	11.5	1.5-2.6	>2.6
Reactors	0.5	4	10
Geo (BSE)	4	3	0

Measurement of the sediment radioactivity in the Gran Sasso region. The contribution is very small.

Borexino planes a first release of the data by the early summer 2010.

ICATPP 2009

Gianpaolo Bellini Universita' degli Studi and INFN - Milano

S/N~1.5

In the geo neutrino energy region; S/N~0.4

Kamland

Signal=73±27 ev.

TABLE II: Estimated backgrounds after selection efficiencies.

Background	Contribution
Accidentals	80.5 ± 0.1
⁹ Li/ ⁸ He	13.6 ± 1.0
Fast neutron & Atmospheric ν	<9.0
$^{13}C(\alpha,n)^{16}O G.S.$	157.2 ± 17.3
${}^{13}C(\alpha,n){}^{16}O {}^{12}C(n,n\gamma){}^{12}C (4.4 \text{ MeV } \gamma)$	6.1 ± 0.7
${}^{13}C(\alpha,n){}^{16}O 1^{st} exc. state (6.05 MeV e^+e^-)$	15.2 ± 3.5
${}^{13}C(\alpha,n){}^{16}O 2^{nd}$ exc. state (6.13 MeV γ)	3.5 ± 0.2
Total	276.1 ± 23.5

Gianpaolo Bellini Universita' degli Studi and INFN - Milano

ICATPP 2009

Conclusions

- Borexino is validating (or disproving) the current MSW-LMA oscillation model in the vacuum regime
- It is also trying to measure directly the pp and the pep fluxes (producing an experimental point in the transition region)
- For CNO Borexino would establish good upper limits
- A measurement of the ⁷Be flux with a 3% of total error will give an important contribution to the solution of the SSM metallicity puzzle

 Borexino is close to release experimental data on the geoneutrinos with a very small background