Risultati scientifici dell'esperimento Wizard/PAMELA

Vannuccini Elena

Elena Vannuccini

Astromag/WiZard

Extensive R&D in the '80s aiming to optimize **superconducting magnet facility** to be flown as a U.S.-Italy project on Space Station Freedom in the late '90s

WiZard experiment dedicated to search for primoridial antimatter

Project canceled!

Elena Vannuccini

Antimatter in CRs

The first historical measurements of the p/p - ratio and various Ideas of theoretical Interpretations

CR-antimatter measurements in the '90s pamela

- Extensive campaign of daily balloon flights operated by several groups
 - Wizard (MASS, TS, CAPRICE)
 - BESS
 - Others (HEAT, IMAX...)
- Main instrument characteristics
 - Superconducting magnets ($\sim 1T$ field)
 - MWPC & drift chamber tracking systems (0(100µm) resolution)
 - ▶ MDR ~ 100 ÷ 300 *GV*

Elena Vannuccini

The PAMELA apparatus

GF: 21.5 cm² sr Mass: 470 kg Size: 130x70x70 cm³ Power Budget: 360W

CdS 10/10/2018

The magnet

- 5 magnetic modules
- Permanent magnet (Nd-Fe-B alloy) assembled in an aluminum mechanics
- Magnetic cavity sizes (132 x 162) mm² x 445 mm
- <u>Geometric Factor</u>: 20.5 cm²sr
- Black IR absorbing painting
- Magnetic shields

Magnetic module

Magnet elements

Aluminum frame

- 0.48 T @ center
- Average field along the axis: 0.43 T

х

α = 39.17° β = 50.83°

The tracking system

6 detector planes, each composed by 3 ladders Mechanical assembly

- aluminum frames
- carbon fibers stiffeners glued laterally to the ladders
- no material above/below the plane
 - 1 plane = $0.3\% X_0 \rightarrow$ reduced multiple scattering
- elastic + rigid gluing

Test of plane lodging inside the magnet

Silicon detector ladders

Spatial resolution

Sensor instrinsic resolution

Position finding algorithm accounts for non-linear charge collection, asymmetric signal distribution, discretization effects → Landi NIMA 554 (2005)

Sensor alignment

Track-based alignment: minimization of spatial residuals as a function of the roto-traslational parameters of each sensor

- Proton beam (@CERN-SPS 2003) and atmospheric muons (cross-check) \rightarrow ~100±1 μm
- In-flight corrections with protons \rightarrow ~10 μm

Spectrometer systematics

- Due to possible residual distortion of the tracking system
- Evaluated from electron/positron data by comparing the spectrometer momentum with the calorimeter energy

• Upper limit set by positron statistics: $\Delta \eta_{sys} \sim 10^{-4} GV^{-1}$ (MDR_{max}~1200 GV)

pp. 473-522 Published online 27 September 2017 Download fulltext

Elena Vannuccini

Antiparticles &co.

- Antiproton abundance
- Positron & electron abundance, upper limity on anysotropy
- Upper limits on Anti-Helium and SQM

CdS 10/10/2018

Elena Vannuccini

PAMELA result confirmed by AMS-02 and extended in energy. (Indication for a decreasing trend above 300 GV...)

CdS 10/10/2018

Measurement of individual spectra confirms the presence of an additional positron component

Possible interpretations:

Dark matter \rightarrow lepton vs hadron yield must be consistent with \bar{p} observations

Astrophysical processes \rightarrow known processes (eg. pulsars, dense SNR), but large uncertainties on environmental parameters

Propagation \rightarrow diffusion coefficient with weird energy dependency or other subtleties, disfavored

The nuclear component of GCRs

- H&He primary nuclei
- Secondary nuclei from GCR interactions with the ISM:
 - B-to-C abundance
 - H and He isotopes
 - Li, Be, B isotopes

CdS 10/10/2018

H&He absolute fluxes

First high-statistics and highprecision measurement over three decades in energy

@ Low energy → minimum solar activity ($\phi = 450 \div 550$ GV)

@ High-energy \rightarrow Significant hardening above 230 GV for both H and He.

- Excellent agreement between PAMELA and AMS-02 results, within 2%
- Significant hardening above 230 GV for both H and He.
- Consistent with high-energy calorimetric measurements

Possible interpretations:Source effect (multi-population, spectral features at injection)Propagation effect

H-to-He ratio

- Systematic uncertainties partly cancel out at high energy
- Propagation effects small above ~100GV
 - \rightarrow information about source spectra
- Different slope for H and He
- No indication of spectral features above 10 GV

Heliosphere end Magnetosphere

Elena Vannuccini

Heliosphere end Magnetosphere

- Long-term CR-flux variations \rightarrow solar modulation of various CR components
- Solar-particle events (SEPs)
- Short- and mid-term CR-flux variations (semi-periodic & transient phenomena)
- Geomagnetically trapped and re-entrant albedo particles

 \bullet CRs at Earth strongly affected by Heliosphere below ~30 GV

• Heliosphere → Ideal environment to test theory for propagation of charged particles under conditions which well approximate cosmic conditions

- Transport processes: convection, diffusion, drift, adiabatic losses
- Stationary approximation during minimum solar activity

PAMELA multi-species low-energy time-dependent spectra used to constrain model parameters

X (AU)

Charge-dependent solar modulation

charge sign dependence introduced by drift motions experienced by the GCRs during their propagation through the heliosphere

CdS 10/10/2018

Charge-dependent solar modulation

charge sign dependence introduced by drift motions experienced by the GCRs during their propagation through the heliosphere

CdS 10/10/2018

Charge-dependent solar-modulation effect accounts for discrepancies among PAMELA, AMS-02 and data collected during previous solar cycle

Solar energetic particles (SEPs)

SEP observation on Earth:

- Propagation of SEPs along IMF lines
 ⇒ Earth must be magnetically connected
- Anisotropic emission

 \Rightarrow flux observed on Earth depends depends on geomagnetic location

Sun can accelerate particles up to relativistic energies

- Magnetic reconnections
- CME-driven shock

SEPs can be observed in the interplanetary space

Often associated to other solar phenomena, eg:

- X and gamma-ray flares
- Coronal-mass ejections (CMEs)

CdS 10/10/2018

SEPs detected by PAMELA

	SEP Event	Flare			CME				m-type II	DH-type II
#	Date	Onset time	Class	Location	$1^{st}\mbox{-}{app.}$ time	Vapp	V_{spa}	Width	Onset time	Onset time
1	$2006\ 12/13,\ 02{:}55$	$12/13, 02{:}14$	X3.4	S06W23	12/13, 02:54	1774	2184	Н	$12/13,02{:}26$	12/13, 02:45
2	$2006\ 12/14,\ 22:55$	12/14, 21:58	X1.5	S06W46	12/14, 22:30	1042	1139	Н	12/14, 22:09	12/14, 22:30
3	2011 03/21, 04:10	$03/21,02{:}00$		N23W129	$03/21,02{:}24$	1341	1430	Н		
4	$2011\ 06/07,\ 07{:}20$	$06/07,06{:}16$	M2.5	S21W54	06/07, 06:49	1255	1321	Н	$06/07,06{:}25$	$06/07,06{:}45$
5	2011 09/06, 02:20	$09/06,01{:}35$	M5.3	N14W07	$09/06,02{:}24$	782	1232	Н		$09/06,02{:}00$
6	2011 09/06, 23:00	$09/06,22{:}12$	X2.1	N14W18	09/06, 23:05	575	830	Н		09/06, 22:30
7	2011 11/03, 23:00	$11/03, 22{:}00$		N09E154	11/03, 23:30	991	1188	Н		
8	$2012\ 01/23,\ 04{:}45$	$01/23,03{:}38$	M8.7	N28W21	$01/23,04{:}00$	2175	2511	Н		$01/23,04{:}00$
9	$2012\;01/27,18{:}55$	01/27, 18:03	X1.7	N27W71	01/27, 18:27	2508	2541	Н	$01/27,18{:}10$	01/27, 18:30
10	2012 03/07, 02:50	$03/07,00{:}13$	X5.4	N17E27	$03/07,00{:}24$	2684	3146	Н	$03/07,00{:}17$	03/07,01:00
11	$2012\ 03/13,\ 18:05$	$03/13, 17{:}12$	M7.9	N17W66	03/13, 17:36	1884	1931	Н	$03/13,17{:}15$	03/13, 17:35
12	$2012\ 05/17,\ 01:55$	$05/17,01{:}25$	M5.1	N11W76	$05/17,01{:}48$	1582	1596	Н	$05/17,01{:}31$	$05/17,01{:}40$
13	2012 07/06, 23:30	$07/06, 23{:}01$	X1.1	S13W59	07/06, 23:24	1828	1907	Н	07/06, 23:09	07/06, 23:10
14	$2012\ 07/08,\ 18{:}10$	$07/08,16{:}23$	M6.9	S17W74	07/08, 16:54	1497		157	07/08, 16:30	07/08, 16:35
15	2012 07/19, 06:40	$07/19,04{:}17$	M7.7	S13W88	$07/19,05{:}24$	1631	1631	Н	$07/19,05{:}24$	$07/19,05{:}30$
16	2012 07/23, 08:00	$07/23,01{:}50$		S17W132	07/23, 02:36	2003	2156	Н		$07/23,02{:}30$
17	$2013\ 04/11,\ 08{:}25$	$04/11,06{:}56$	M6.5	N09E12	$04/11,07{:}24$	861	1369	Н	$04/11,07{:}02$	$04/11,07{:}10$
18	$2013\ 05/22,\ 14{:}20$	05/22, 13:08	M5.0	N15W70	05/22, 13:25	1466	1491	Н	$05/22,12{:}59$	05/22, 13:10
19	$2013\ 10/28,\ 16:30$	$10/28,04{:}32$	M4.4	S06E28	10/28, 15:36	812	1098	Н	-	10/28, 15:24
20	2013 11/02, 07:00	$11/02,04{:}00$		N03W139	$11/02,04{:}48$	828	998	Н		
21	$2014\ 01/06,\ 08{:}15$	$01/06,07{:}30$	X3.5	S15W112	$01/06,08{:}00$	1402	1431	Н	$01/06,07{:}45$	$01/06,07{:}58$
22	$2014\ 01/07,\ 19:55$	01/07, 18:04	X1.2	S15W11	01/07, 18:24	1830	2246	Н	01/07, 18:17	01/07, 18:27
23	$2014\ 02/25,\ 03:50$	$02/25,00{:}39$	X4.9	S12E82	$02/25,01{:}25$	2147	2153	Н	02/25,00:56	02/25,00.56
24	2014 04/18, 13:40	04/18, 12:31	M7.3	S20W34	04/18, 13:25	1203	1359	Н	$04/18,12{:}55$	04/18, 13:06
25	$2014\ 09/01,\ 17:20$	09/01, 10:58	X2.4	N14E127	09/01, 11:12	1901	2017	Н		09/01, 11:12
26	2014 09/10, 21:35	09/10, 17:21	X1.6	N14E02	09/10, 18:00	1267	1652	Н		09/10, 17:45

- PAMELA bridges the gap between low-energy in-situ spacecrafts and ground-based NM network observations (GLEs)
- 26 SEPs observed within 2006-2014

SEPs detected by PAMELA

• Spectra consistent with CME-driven shock acceleration (finite escape time) • No qualitative distinction between SEPs observed as GLEs and those that are not

Elena Vannuccini

CdS 10/10/2018

2011/06/07 -7-2011/09/06

2012/05/17

2013/05/22

2000

- 2013/11/02

14/02/25 - 2014/04/18

2014/09/01 - 2014/09/10

1/09/06

1000

May 17°, 2012 SEP event

- First observed GLE of 24° solar cycle
- Earth magnetically connected to the Sun
- Associated to M1.5-class X-ray flare
- Extended emission (>100MeV) seen by Fermi-LAT

Unique possibility to measure pitch angle distribution over broad energy range, to disentangle interplanetary **transport** process

Asymptotic direction during first polar pass after the event onset

May 17, 2012, 01:57:00 - 02:20:00 UT

Adriani et al. - ApJL - 801 (2015) L3

Pamela

Elena Vannuccini

May 17°, 2012 SEP event

First evidence of two simultaneous particle populations:

- High rigidity component consistent with NM where particles are field aligned → Beam width ~40-60° (not scattered)
- Low rigidity component shows significant scattering for pitch angles ~90°

The PAMELA obital environment

PAMELA sweep through the magnetosphere along a near-Earth semipolar orbit

- Observation of trapped radiation
- Characterization of highenergy albedo population
- → Improvement in low-altitude radiation-environment description

Trapped antiprotons

First observation of geomagnetically trapped p-bar

Produced by CR interaction with atmosfere and trapped by the magnetosphere

Most abundant p-bar source near the Earth!

Adriani et al.

- ApJ Lett. - 737 (2011) L29

Before PAMELA

- Standard paradigm
 - GCRs originates from uniformly distributed SNRs via shock-driven 2°-order Fermi acceleration (**single power-law spectra**)
 - **Antiparticles** are produced by nuclear interactions with uniformly distributed matter within the Galaxy
 - Absolute fluxes of GCRs altered while penetrating the heliosphere, modulation described by **spherical potential**

Conclusions

After PAMELA

- Measurement of GCR particles and antiparticles over a wide energy range:
 - Spectral hardening of H and He at about 200GV and different slope for H and He indicate a more complex scenario of nuclear GCR origin and/or propagation
 - Evidence of a positron excess above 10GeV indicates new phenomena (dark matter? astrophysical e+- sources?)
 - p-bar consistent with secondary production hypothesis up to 200 GeV puts further constraints to possible sources
 - Precise measurements of light particle spectra provides improvement to propagation models

• Measurement of long- and short- time variation of low-energy particles:

- Tuning of fluid-dynamic model of heliosphere
- Study of solar phenomena, bridging the information provided by low-energy in-situ observations and high-energy surface observations
- Measurement of trapped and quasi-trapped particles:
 - Significant improvement in magnetosphere modeling (radiation-environment)

Continuita` con l'attivita` Wizard Pa

• Cosmic-antimatter search

- Independent approach to antinuclei search
 - × GAPS experiment
- Next generation spectrometers → must relay on superconducting magnets
 - 🗴 LAPUTA r&d, ALADINO proposal
- High-energy CRs
 - Calorimetric measurements
 - × CALET experiment
 - × CaloCube r&d
 - × HERD experiment

CdS 10/10/2018

(Parker 1965)

- a: $f(\mathbf{x}, p, t)$, omnidirectional function distribution of CRs; b: convection with solar wind V;
- c: diffusion by magnetic field irregualrities;
- d: drift, curvature and gradient in magnetic field;
- e: adiabatic energy losses;

Stationary approximation during minimum solar activity

- **Convection** with solar-wind velocity *V*
- Adiabatic energy changes (
 $\displaystyle (\propto \pmb{\nabla} \cdot \pmb{V} \,)$

• **Diffusion**, driven by small-scale HMF irregularities

• Drift caused by gradients and curvature in the global HMF

Elena Vannuccini

- Drift path changes at each field reversal \rightarrow ~22-year cycle
- Asimmetry between particle of opposite charge \rightarrow charge dependent solar modulation

Dec 13°-14° 2006 SEP event

First instrument to directly measure relativistic SEPs in near-Earth space.

It bridges the gap between low-energy direct spacebased observations (GOES) with high-energy indirect gound-based measurements (NM GLEs)

Protons PAMELA (160 - 500) MeV PAMELA (80 - 160) MeV sr s GeV PAMELA (500 - 1500) MeV PAMELA (1500 - 3000) MeV GOES-11 (80 - 160) MeV GOES-11 (160 - 500) MeV Apatity (NM) Barentsburg (NM) oton/ GLE 14/0100 14/1300 15/0100 15/1300 13/1300 16/0100 Helium PAMELA (75 - 125) MeV/n PAMELA (125 - 350) MeV/n PAMELA (350 - 700) MeV/n GOES-11 (75 - 125) MeV/n 13/1300 14/0100 14/1300 15/1300 16/0100 Universal Time (dd/hh:mm) 15/010

Adriani et al. - ApJ - 742 (2011) 102

PAMELA observation done during passages over high-latitude regions

The apparatus

The Time-of-Flight system

- •3 double-layer scintillator paddles
- •X/Y segmentation
- •Total: 48 Channels

Main tasks:

- •First-level trigger
- •Albedo rejection
- $\cdot dE/dx$
- •Particle identification (<1GeV/c)

Performances:

• $\sigma_{paddle} \sim 110 ps$ • $\sigma_{TOF} \sim 330 ps$ (for MIPs)

CdS 10/10/2018

The apparatus

The em calorimeter

- 44 Si layers (X/Y) +22 W planes
- 16.3 X_o / 0.6 l₀
- 4224 channels
- Dynamic range 1400 mip
- Self-trigger mode (> 300 GeV GF~600 cm² sr) Main tasks:
- e/h discrimination
- e^{+/-} energy measurement

Performances:

- p/e^+ selection efficinecy ~ 90%
- p rejection factor 10⁶
- e rejection factor >10⁴
- Energy resolution ~5% @200GeV

Elena Vannuccini

The apparatus CARD **S**1 CAT **S2 S**3 **SPECTROMETER** CALORIMETER

Shower-tail catcher (S4)•1 scintillator paddle 10mm thickMain tasks:

• ND trigger

Neutron detector

- •36 ³He counters: ³He(n,p)T \rightarrow Ep=780 keV
- •1cm thick polyetilene moderators
- n collected within 200 µs time-window
 Main tasks:
- •e/h discrimination @high-energy

The magnetic field

MAGNETIC FIELD MEASUREMENTS

• Gaussmeter (F.W. Bell) equipped with 3-axis probe mounted on a motorized positioning device (0.1mm precision)

- Measurement of the three components in 67367 points 5mm apart from each other
- Field inside the cavity:
 - 0.48 T @ center
 - Average field along the axis: 0.43 T
- Good uniformity
- External magnetic field: magnetic momentum < 90 Am²

Angular systematic (flight data)

Positron-excess interpretations

Dark matter

- boost factor required
- lepton vs hadron yield must be consistent with pbar observation

- known processes
- large uncertainties on environmental parameters

CdS 10/10/2018

"...leptons emitted by these objects are therefore unlikely to be the origin of the excess positrons, which may have a more exotic origin"

excess"

B and C absolute fluxes

Widest energy range covered so far

Reduced tracking performance, due to detector saturation:

$$\cdot \sigma_{\rm x} = 14 \ \mu {\rm m}, \ \sigma_{\rm v} = 19 \ \mu {\rm m}$$

• MDR = 250 GV

B/C ratio

B nuclei are of ~pure secondary origin

 $C,N,O + ISM \rightarrow B + \dots$

 \rightarrow B/C provides the strongest constraint to propagation parameters so far

PAMELA data consistent with previous measurements and with a standard scenario

H isotopes

Parameter constraint competitve/complement ary to B/C measurement with current instrument precision

Probe different Z/A regime

Test «universality» of propagation

(Coste et al. 2012)

He isotopes

Parameter constraint competitve/complement ary to B/C measurement with current instrument precision

Probe different Z/A regime

Test «universality» of propagation

(Coste et al. 2012)

Trajectory analysis

The PAMELA obital environment

PAMELA sweep through the magnetosphere along a near-Earth semipolar orbit

- Observation of trapped radiation
- Characterization of highenergy albedo population
- → Improvement in low-altitude radiation-environment description

Trapped antiprotons

First observation of geomagnetically trapped p-bar

Produced by CR interaction with atmosfere and trapped by the magnetosphere

Most abundant p-bar source near the Earth!

Adriani et al.

- ApJ Lett. - 737 (2011) L29

Trapped protons

Observation of trapped radiation performed down to $L_{shell} \sim 1.1R_E$ and up to 4 GeV

Comparison with empirical model

Improvement in lowaltitude radiationenvironment description

CdS 10/10/2018
Re-entrant albedo protons

Caracterization of highenergy albedo population

Elena Vannuccini

CdS 10/10/2018

May 17°, 2012 SEP event

- First observed GLE of 24° solar cycle
- Earth magnetically connected to the Sun
- Associated to M1.5-class X-ray flare
- Extended emission (>100MeV) seen by Fermi-LAT

Unique possibility to measure pitch angle distribution over broad energy range, to disentangle interplanetary **transport** process

Asymptotic direction during first polar pass after the event onset

May 17, 2012, 01:57:00 - 02:20:00 UT

Adriani et al. - ApJL - 801 (2015) L3

CdS 10/10/2018

Elena Vannuccini

May 17°, 2012 SEP event

First evidence of two simultaneous particle populations:

- High rigidity component consistent with NM where particles are field aligned → Beam width ~40-60° (not scattered)
- Low rigidity component shows significant scattering for pitch angles ~90°

