"Exotic" hadron-hadron S-wave Interaction

Bing-song Zou

Institute of Theoretical Physics, CAS, Beijing

1. "Exotic" $\pi\pi$ S-wave Interaction

Why interested ?

1) a fundamental strong interaction process and a necessary input for many reactions involving multi-pions

2) I=0 $\pi\pi$ S-wave has the same quantum number of f₀ resonances which include : $\sigma/f_0(500)$ (σ -model, σ -exchange for NN interaction) and the lightest glueball candidate f₀(1500)/f₀(1710)

Time dependent well established f₀ resonances

f₀(400-1200)

References:

- B.S.Zou, D.V.Bugg, Phys. Rev. D48, R3948 (1993) "Is f₀(975) a narrow resonance?"
- B.S.Zou, D.V.Bugg, Phys. Rev. D50, 591 (1994) "Remarks on I=0 JPC=0++ States: σ/ϵ and $f_0(975)$ "
- Cbar Coll., B.S.Zou, Phys. Lett. B323, 233 (1994)
 - "Observation of two J^{PC}=0⁺⁺ resonances at 1365 and 1520 MeV"
- D.V.Bugg,I.Scott, B.S.Zou et al, Phys. Lett. B353, 378 (1995) "Further amplitude analysis of $J/\psi \rightarrow \gamma(\pi\pi\pi\pi)$ "
- D.V.Bugg, A.Sarantsev, B.S.Zou, Nucl. Phys. B471, 59 (1996) "New results on $\pi\pi$ phase shifts between 600 and 1900 MeV"

"Exotic" $\pi\pi$ S-wave interaction : broad σ -background with narrow resonances as dips instead of peaks

D.V.Bugg, A.Sarantsev, B.S.Zou, Nucl. Phys. B471 (1996) 59

Similarity for $\pi\pi$, πK and πN s-wave scattering

What's the nature of the broad σ ?

Important role by t-channel ρ exchange for all these processes

 $\pi K \& \pi N$

 $K_{\rho}^{I=0} = \text{-} 2 \ K_{\rho}^{I=2} \,, \qquad \quad K_{\rho}^{I=1/2} = \text{-} 2 \ K_{\rho}^{I=3/2} \label{eq:K_relation}$

D. Lohse, J.W. Durso, K. Holinde, J. Speth, Nucl.Phys.A516, 513 (1990) B.S.Zou, D.V.Bugg, Phys. Rev. D50, 591 (1994)

An interesting paper by T.Hyodo, D.Jido, A.Hosaka, PRL 97 (2006) 192002 "Exotic hadrons in s-wave chiral dynamics"

Basic features of I=2 $\pi\pi$ Interaction

F.Q.Wu, B.S.Zou et al., Nucl. Phys.A735 (2004) 111

An important cause for hadron-hadron S-wave interactions appearing "exotic" is

t-channel meson-exchange amplitude has a comparable strength as s-channel resonance contribution for S-waves.

For higher partial waves, s-channel resonance contribution dominates.

Why broad σ appears narrower in production processes than in $\pi\pi$ elastic scattering?

 $\mathbf{T}_{el} = \mathbf{K} / (\mathbf{1} - \mathbf{i} \rho \mathbf{K}) = \mathbf{K} + \mathbf{K} \mathbf{i} \rho \mathbf{K} + \mathbf{K} \mathbf{i} \rho \mathbf{K} \mathbf{i} \rho \mathbf{K} + \dots$

 $T_{\text{prod}} = P / (1 - i\rho K) = P + P i\rho K + P i\rho K i\rho K + \dots$

 $T_{el} \quad \mbox{from Bugg,Sarantsev,Zou Nucl. Phys. B471 (1996) 59} \\ \mbox{with σ pole at $(0.571 - i 0.420)$ GeV}$

 $T_{prod} = T_{el} * P/K$, $K = \tan \delta / \rho$

How about production vertex P?

$$\mathbf{P}(\mathbf{V}^{*} \rightarrow \mathbf{V}\pi^{+}\pi^{-}) = -\frac{4}{F_{0}^{2}} \left[\frac{g}{2} (m_{\pi\pi}^{2} - 2M_{\pi}^{2}) + g_{1}E_{\pi^{+}}E_{\pi^{-}} \right] \epsilon_{\Psi}^{*} \cdot \epsilon_{\Psi'}$$

T. Mannel, R. Urech, Z. Phys.C73, 541 (1997);
Ulf-G. Meißner, J.Oller, Nucl.Phys. A679 (2001) 671;
M.Ishida et al., Phys. Lett. B518 (2001) 47;
L. Roca, J. Palomar, E. Oset, H.C.Chiang, Nucl. Phys. A744 (2004) 127
F.K.Guo, P.N.Shen, H.C.Chiang, R.G.Ping, Nucl.Phys.A761 (2005) 269

- For $\psi^* \rightarrow J/\psi \pi^+ \pi^-$, E_{π} small, 1st term dominates \rightarrow higher σ peak
- For $\psi \rightarrow \omega \pi^+\pi^-$, E_{π} large, 2nd term dominates \rightarrow lower σ peak

 σ peak position is process dependent !

$$\mathbf{P} \sim \mathbf{c}_1 + \mathbf{c}_2 \, \mathbf{s}$$

BES, Phys.Rev. D62 (2000) 032002

BES, Phys.Lett. B598 (2004) 149

Why f₀(980)'s peak width is so narrow ?

$$f = \frac{1}{M^2 - s - i(g_1 \rho_{\pi\pi} + g_2 \rho_{K\bar{K}})}$$

BES, PLB 607 (2005) 243

M = 965 MeV

$$g_1 = 165 \text{ MeV}^2$$

 $r = g_2/g_1 = 4.21$

$$\rho_{K\bar{K}} = (1 - 4m_K^2 / s)^{1/2}$$

Strong coupling to \overline{KK} strongly reduce the peak width of $f_0(980)$ **Unitarity and K-matrix approach**

Relations among S-matrix, T-matrix, K-matrix

S = I + 2i ρ T, T = $\frac{K}{1 - i\rho K}$ Unitarity relation: S⁺S = I \rightarrow ImT = T⁺ ρ T, Im $\frac{1}{T} = -\rho$ $\rightarrow \frac{1}{T} = \frac{1}{K} - i\rho$, K ~ real

For a single channel BW resonance:

$$S = \frac{M_R^2 - s + ig^2\rho(s)}{M_R^2 - s - ig^2\rho(s)}, \ T = \frac{g^2}{M_R^2 - s - ig^2\rho(s)}, \ K = \frac{g^2}{M_R^2 - s}$$

How to add two resonances for a single channel 2-body scattering ?

1)
$$T = \frac{g_1^2}{M_1^2 - s - ig_1^2\rho(s)} + \frac{g_2^2}{M_2^2 - s - ig_2^2\rho(s)}$$
 violates unitarity

2)
$$K = \frac{g_1^2}{M_1^2 - s} + \frac{g_2^2}{M_2^2 - s} \rightarrow T = \frac{g_1^2(M_2^2 - s) + g_2^2(M_1^2 - s)}{(M_1^2 - s)(M_2^2 - s) - i\rho(s)[g_1^2(M_2^2 - s) + g_2^2(M_1^2 - s)]}$$

3)
$$S = \frac{M_1^2 - s + ig_1^2\rho(s)}{M_1^2 - s - ig_1^2\rho(s)} \times \frac{M_2^2 - s + ig_2^2\rho(s)}{M_2^2 - s - ig_2^2\rho(s)}$$
$$\longrightarrow T = \frac{g_1^2(M_2^2 - s) + g_2^2(M_1^2 - s)}{[M_1^2 - s - ig_1^2\rho(s)][M_2^2 - s - ig_2^2\rho(s)]}$$

For a multi-hadron production final state

$$T_p = \frac{C_1(s)}{M_1^2 - s - ig_1^2\rho(s)} + \frac{C_2(s)}{M_2^2 - s - ig_2^2\rho(s)}$$

not violating unitarity

2. I=0 ${}^{1}S_{0}$ pp & I=1 ${}^{1}S_{0}$ pp near threshold enhancement

$$J/\psi \rightarrow \gamma pp$$

 $p p \rightarrow p p \eta$

BES, Phys. Rev. Lett. 91, 022001 (2003)

COSY-TOF, Eur.Phys.J.A16, 127 (2003)

What should be the largest decay mode of I=0 ${}^{1}S_{0}$ pp state ?

I=0 ¹S₀ pp atom :
$$\pi^{0}\pi^{0}\eta / \pi^{0}\pi^{0}\eta' \sim 2$$

C.Amsler et al., B.S.Zou, Nucl. Phys. A720 (2003) 357

J/ ψ -> γ η π⁺π⁻ : BES, Phys. Lett. B446 (1999) 356

Fig. 2. The $\eta \pi^+ \pi^-$ mass spectrum.

pp near threshold enhancement

= some broad sub-threshold 0⁻⁺ resonance(s) + FSI

Zou B.S., Chiang H.C., Phys.Rev.D69 (2004) 034004 A.Sibirtsev et al., Phys.Rev. D71 (2005) 054010

 $J/\psi \rightarrow \gamma \eta \pi^+\pi^-$:

BES, Phys. Lett. B446 (1999) 356

$$M = 1840 \pm 15 \text{ MeV}$$

 $\Gamma = 170 \pm 40 \text{ MeV}$

What's its relation with X(1835) observed in $J/\psi \rightarrow \gamma \eta' \pi^+\pi^-$

One-Pion-Exchange and BES pp $({}^{1}S_{0})$ near threshold enhancement Zou B.S., Chiang H.C. Phys.Rev.D69 (2004) 034004

NN interaction :
$$V_{\pi}^{NN}(t) = \frac{f_{\pi}^2}{m_{\pi}^2 - t} \frac{1}{3} \vec{\sigma}_1 \cdot \vec{\sigma}_2 \vec{\tau}_1 \cdot \vec{\tau}_2$$

 $\vec{\sigma}_1 \cdot \vec{\sigma}_2 \vec{\tau}_1 \cdot \vec{\tau}_2 = \begin{cases} 9 & (S, I) = (0, 0) \\ 1 & (S, I) = (1, 1) \\ -3 & (S, I) = (1, 0) \end{cases} \begin{array}{c} \text{deuteron} \\ \text{or } (0, 1) \end{cases}$

NN interaction :
$$V_{\pi}^{N\bar{N}}(t) = -V_{\pi}^{NN}(t)$$

I=0, $pp(^{1}S_{0})$ gets the biggest attractive force !

$$K_{s} = \frac{1}{4k^{2}} \int_{-4k^{2}}^{0} dt V_{p\bar{p}}^{\pi}(t) = -\frac{3f_{\pi}^{2}}{4k^{2}} ln(1 + \frac{4k^{2}}{m_{\pi}^{2}})$$
$$T_{J/\psi \to \gamma p\bar{p}} = \frac{T_{J/\psi \to \gamma p\bar{p}}^{(0)}}{1 - i\rho_{p\bar{p}}K_{s}} = \frac{CK_{\gamma}}{1 + i\frac{3M_{p}^{2}}{k\sqrt{s}}\frac{f_{\pi}^{2}}{4\pi}ln(1 + \frac{4k^{2}}{m_{\pi}^{2}})}$$

$\pi+\sigma+\rho+\omega$ exchange FSI & full FSI by A.Sibirtsev et al. Phys.Rev. D71 (2005) 054010

G.Y. Chen, H.R. Dong, J.P. Ma, **Phys.Rev.D78:054022,2008** One-pion-exchange including zero-range repulsive force

In summary, pp near threshold enhancement is very likely due to some broad sub-threshold 0⁻⁺ resonance(s) plus FSI. **3.** KA s-wave near threshold enhancement

complimentary BES and COSY experiments

 $J/\psi \rightarrow P K^{-} \overline{\Lambda}$ vs $P P \rightarrow P K^{+} \Lambda$

P $\overline{\Lambda}$ & **P** Λ the same t-channel interaction

K⁻ $\overline{\Lambda}$ & **K**⁺ Λ the same interaction

P K⁻ for Λ^* **P** K⁺ for pentaguarks

Near-threshold enhancement in $M_{K\Lambda}$

 $J/\psi \rightarrow nK_{s}^{0}\Lambda$

An enhancement near ΛK_S threshold is evident
 2 other peaks just below thresholds of KΣ* & K*Σ
 KΣ* ~1880 MeV
 K*Σ ~ 2086 MeV

$N^*(1535)$ parameters	BES	PDG2000
Mass (MeV)	1530 ± 10	1520 - 1555
Γ (MeV)	95 ± 25	100 - 250
$N^*(1650)$ parameters	BES	PDG2000
Mass (MeV)	1647 ± 20	1640 - 1680
Γ (MeV)	145_{-45}^{+80}	145 - 190

BES Collaboration, Phys. Lett. B510 (2001) 75

B.C.Liu and B.S.Zou, Phys. Rev. Lett. 96 (2006) 042002

From relative branching ratios of $J/\psi \rightarrow p \ \bar{N}^* \rightarrow p (K- \bar{\Lambda}) / p (\bar{p}\eta)$

 $g_{N*K\Lambda}/g_{N*p\eta}/g_{N*p\pi} \sim 1.3:1:0.6$

Smaller N*(1535) BW mass

previous results $0 \sim 2.6$ from πN and γN data

Evidence for large $g_{N^*K\Lambda}$ from $pp \rightarrow p K^+ \Lambda$

Total cross section and theoretical results with N*(1535), N*(1650), N*(1710), N*(1720) B.C.Liu, B.S.Zou, Phys. Rev. Lett. 96 (2006) 042002

Tsushima, Sibirtsev, Thomas, PRC59 (1999) 369, without including N*(1535)

FSI vs N*(1535) contribution in pp \rightarrow p K⁺ Λ

B.C.Liu & B.S.Zou, Phys. Rev. Lett. 98 (2007) 039102 (reply) A.Sibirtsev et al., Phys. Rev. Lett. 98 (2007) 039101 (comment)

Interference between N*(1535) and non-resonant FSI

FIG. 1: The moduli of the transition amplitudes in different channels leading to the ηp and $K^+\Lambda$ final states.

FIG. 4: Modulus squared of the amplitude of $J/\psi \rightarrow pK^+\Lambda$ in comparison with the equivalent quantity obtained experimentally (integrated cross section weighted by phase space) [17].

$$R = \frac{|g_{N*(1535)K\Lambda}|}{|g_{N*(1535)\eta N}|} = 0.5 \sim 0.7.$$

L.S.Geng, E.Oset, B.S.Zou, M.Döring, Phys.Rev.C79:025203,2009

Mass of N*(1535)

$$BW(p_{N^*}) = \frac{1}{M_{N^*}^2 - s - iM_{N^*}\Gamma_{N^*}(s)} \sum_{\substack{20\\15\\0}} \frac{1}{15}$$
(1) $\Gamma_{N^*}(s) = 98MeV$
 $M_{N^*} = 1515MeV$

$$M_{N^*} = 1515MeV$$
(2) $\Gamma_{N^*}(s) = \Gamma_{N^*}^0 \left(0.5 \frac{\rho_{\pi N}(s)}{\rho_{\pi N}(M_{N^*}^2)} + 0.5 \frac{\rho_{\eta N}(s)}{\rho_{\eta N}(M_{N^*}^2)} \right) = \Gamma_{N^*}^0 \left[0.8\rho_{\pi N}(s) + 2.1\rho_{\eta N}(s) \right]$

 $M_{N^*} = 1535 MeV$ and $\Gamma^0_{N^*} = 150 MeV$

(3) $\Gamma_{N^*}(s) = \Gamma_{N^*}^0 [0.8\rho_{\pi N}(s) + 2.1\rho_{\eta N}(s) + 3.5\rho_{\Lambda K}(s)]$ $M_{N^*} \approx 1400 MeV$ $\Gamma_{N^*}^0 = 270 MeV$

Nature of N*(1535) and its 1/2⁻ octet partner

Zhang et al, hep-ph/0403210

- $N^{*}(1535) \sim uud (L=1) + \varepsilon [ud][us] s + ...$
- $N^{*}(1440) \sim uud (n=1) + \xi [ud][ud] d + ...$
- $\Lambda^{*}(1405) \sim uds (L=1) + \epsilon [ud][su] u + ...$

N*(1535): [ud][us] \overline{s} → larger coupling to Nη, Nη', Nφ & KΛ, weaker to Nπ & KΣ, and heavier ! B.C.Liu, B.S.Zou, PRL 96(2006)042002

Evidence for large $g_{N^*N\phi}$ from $\pi^-p \rightarrow n\phi \& pp \rightarrow pp\phi$ Xie, Zou & Chiang, PRC77(2008)015206

Sub-threshold $\Delta^{++*}(1620)$ in pp \rightarrow nK⁺ Σ^{+}

J.J.Xie, B.S.Zou, PLB649 (2007) 405

t-channel p-exchange plays important role !

Summary for our study on $J/\psi \rightarrow P K^- \overline{\Lambda}$ and $P P \rightarrow P K^+ \Lambda$

- KA near-threshold enhancement due to sub-threshold N*(1535) with large g_{N*KA}
- 2) Larger [ud][us] s component in N*(1535) makes it coupling stronger to strangeness and heavier !

Observation of Two New N^* Peaks in $J/\psi \to p\pi^-\bar{n}$ and $\bar{p}\pi^+n$ Decays BES Collaboration

Off-shell nucleon contribution

If fitting it with a simple BW formula, its mass and width are not compatible with any PDG known particle; and it has an "un-usual large BR" to πN !

But it is NOT a new resonance !

Comment on BR of sub-threshold resonances

a₀(980) has large BR to KK X(1859) has large BR to pp

Nucleon has large BR to πN

One should either change "large" to "zero" or change "BR" to "coupling"

4. From K Σ , Kp \rightarrow $D\Sigma_c$, $D_s\Lambda_c \rightarrow B\Sigma_b$, $B_s\Lambda_b$ bound states J.J.Wu, R.Molina, E.Oset, B.S.Zou, PRL 105 (2010) 232001

$$\mathcal{L}_{VVV} = ig \langle V^{\mu} [V^{\nu}, \partial_{\mu} V_{\nu}] \rangle$$

$$\mathcal{L}_{PPV} = -ig \langle V^{\mu} [P, \partial_{\mu} P] \rangle$$

$$\mathcal{L}_{BBV} = g (\langle \bar{B} \gamma_{\mu} [V^{\mu}, B] \rangle + \langle \bar{B} \gamma_{\mu} B \rangle \langle V^{\mu} \rangle)$$

$$V_{ab(P_{1}B_{1} \rightarrow P_{2}B_{2})} = \frac{C_{ab}}{4f^{2}} (E_{P_{1}} + E_{P_{2}}),$$

$$V_{ab(V_{1}B_{1} \rightarrow V_{2}B_{2})} = \frac{C_{ab}}{4f^{2}} (E_{V_{1}} + E_{V_{2}})\vec{\epsilon}_{1} \cdot \vec{\epsilon}_{2},$$

$$T - [1 - VC]^{-1}V$$

$$T_{ab} = \frac{g_a g_b}{\sqrt{s} - z_R}$$

$\overline{\mathbf{D}}\Sigma_{\mathbf{c}}$ with different approaches:

 J.J.Wu, R.Molina, E.Oset, B.S.Zou, PRL 105 (2010) 232001
 -- Valencia

 J.J.Wu, T.S.H.Lee, B.S.Zou, PRC85(2012)044002
 -- EBAC

 C.W.Shen, D.Ronchen, U.Meissner, B.S.Zou, CPC42(2018)023106
 --JuBonn

 $D\Sigma_c$ Valencia 4269MeV EBAC ~ 4309MeV

$$T = V + VG^{Valencia}T$$

$$G^{Valencia} = \int \frac{dp^{4}}{(2\pi)^{4}} \frac{2m_{B}}{(p^{2} - m_{B}^{2})((P - p)^{2} - m_{M}^{2})}$$

$$T_{ab} = \lim_{\sqrt{s} \to z_{R}} \frac{g_{a}g_{b}}{\sqrt{s} - z_{R}}$$

$$T(q_{1}, q_{2}) = V + \int q_{3}^{2}dq_{3} V(q_{1}, q_{3})G(q_{3})T(q_{3}, q_{2})$$

$$G(q_{3}) = \frac{1}{\sqrt{s} - E_{M} - E_{B}},$$

$$G(q_{3}) = \frac{1}{\sqrt{s} - E_{M} - E_{B}},$$

$$VF_{RB_{1} - SP_{2}B_{2}}^{I,V} = \frac{p_{V}^{\mu}p_{V}^{\nu}/m_{V}^{2} - g^{\mu\nu}}{p_{V}^{2} - m_{V}^{2}} \sim \frac{-g^{\mu\nu}}{-m_{V}^{2}} \sim \frac{-g^{\mu\nu}}{-m_{V}^{2}},$$

$$VF_{RB_{1} - SP_{2}B_{2}}^{I,V} = C_{VB_{1} - SP_{2}B_{2}}^{I,V} \frac{M_{V}^{2}}{4f^{2}} G_{V}^{\mu\nu} \overline{u}_{B_{2}} \gamma_{\mu}(p_{R_{1}} + p_{P_{2}})_{\nu} u_{B_{1}},$$

$$VF_{RB_{1} - SP_{2}B_{2}}^{I,V} = C_{VB_{1} - SP_{2}B_{2}}^{I,V} \frac{M_{V}^{2}}{4f^{2}} G_{V}^{\mu\nu} \overline{u}_{B_{2}} \gamma_{\mu}(p_{R_{1}} + p_{P_{2}})_{\nu} u_{B_{1}},$$

$$VF_{RB_{1} - SP_{2}B_{2}}^{I,V} = C_{VB_{1} - SP_{2}B_{2}}^{I,V} \frac{M_{V}^{2}}{4f^{2}} G_{V}^{\mu\nu} \overline{u}_{B_{2}} \gamma_{\mu}(p_{R_{1}} + p_{P_{2}})_{\nu} u_{B_{1}},$$

$$VF_{RB_{1} - SP_{2}B_{2}}^{I,V} = C_{VB_{1} - SP_{2}B_{2}}^{I,V} \frac{M_{V}^{2}}{4f^{2}} G_{V}^{\mu\nu} \overline{u}_{B_{2}} \gamma_{\mu}(p_{R_{1}} + p_{P_{2}})_{\nu} u_{B_{1}},$$

$$VF_{RB_{1} - SP_{2}B_{2}}^{I,V} = C_{VB_{1} - SP_{2}B_{2}}^{I,V} \frac{M_{V}^{2}}{4f^{2}} G_{V}^{\mu\nu} \overline{u}_{B_{2}} \gamma_{\mu}(p_{R_{1}} + p_{P_{2}})_{\nu} u_{B_{1}} (-\varepsilon_{V_{1}} \cdot \varepsilon_{V_{2}})$$

$$V_{ab(P_{1}B_{1} - SP_{2}B_{2})} = \frac{C_{ab}}{4f^{2}} (E_{P_{1}} + E_{P_{1}}) K_{AB_{1} - SP_{2}B_{2}}^{I,V} = C_{VB_{1} - SP_{2}B_{2}}^{I,V} \frac{M_{V}^{2}}{4f^{2}} G_{V}^{\mu\nu} \overline{u}_{B_{2}} \gamma_{\mu}(p_{V_{1}} + p_{V_{2}})_{\nu} u_{B_{1}} (-\varepsilon_{V_{1}} \cdot \varepsilon_{V_{2}})$$

$$V_{ab(V_{1}B_{1} - SV_{2}B_{2})} = \frac{C_{ab}}{4f^{2}} (E_{V_{1}} + E_{V_{2}}) \vec{\varepsilon}_{1} \cdot \vec{\varepsilon}_{2}$$

$$JuBonn \sim 4295MeV$$

Hidden charm N* by other approaches

 $\overline{\mathbf{D}\Sigma_{c}}$ + $\overline{\mathbf{D}}^{*}\Sigma_{c}$ coupled channel state ~ 4.26 GeV C.W.Xiao, J.Nieves, E.Oset, PRD 88 (2013) 056012

DΣ_c state in a chiral quark model ~ 4.3 GeV W.L.Wang, F.Huang, Z.Y.Zhang, B.S.Zou, PRC84(2011)015203

DΣ_c state in EBAC-DCC model ~ 4.3 GeV J.J.Wu, T.S.H.Lee, B.S.Zou, PRC85(2012)044002

DΣ_c state in Schoedinger Equation method ~ 4.3 GeV Z.C.Yang, Z.F. Sun, J. He, X.Liu, S.L.Zhu, CPC36(2012)6

ccqqq with 3 kinds of qq hyperfine interaction ~ 4.1 GeV S.G.Yuan, K.W.Wei, J.He, H.S.Xu, B.S.Zou, EPJA48(2012)61

 $D\Sigma_c - \eta_c N - \eta' N$ coupled channel state ~ 3.5 GeV J. Hofmann, M.F.M. Lutz, Nucl. Phys. A 763 (2005) 90

cc-N bound states in topological soliton model ~ 3.9 GeV C. Gobbi, D.O. Riska, N.N. Scoccola, Phys. Lett. B 296 (1992) 166

J.J.Wu, R.Molina, E.Oset, B.S.Zou, PRL 105 (2010) 232001

	(I,S)	z_R (MeV)		g_a		J ^P
N*	(1/2, 0)		$\bar{D}\Sigma_c$	$\bar{D}\Lambda_{c}^{+}$		1/2-
		4269	2.85	0		1/2
	(0, -1)		$\bar{D}_s \Lambda_c^+$	$\overline{D}\Xi_c$	$\overline{D}\Xi'_{c}$	
۸*		4213	1.37	3.25	0	
		4403	0	0	2.64	

TABLE III: Pole positions z_R and coupling constants g_a for the states from $PB \rightarrow PB$.

	(I,S)	z_R (MeV)		g_a		
N *	(1/2, 0)		$\bar{D}^*\Sigma_c$	$\bar{D}^* \Lambda_c^+$		1/2- 3/2-
		4418	2.75	0		112, 312
	(0, -1)		$\bar{D}_{s}^{*}\Lambda_{c}^{+}$	$\bar{D}^* \Xi_c$	$\bar{D}^* \Xi'_c$	
۸*		4370	1.23	3.14	0	
1		4550	0	0	2.53	

TABLE IV: Pole position and coupling constants for the bound states from $VB \rightarrow VB$.

J.J.Wu, R.Molina, E.Oset, B.S.Zou, PRL 105 (2010) 232001

	(I,S)	M	Г	Γ_i						Γ Γ_i				J P
N *	(1/2, 0)			πN	ηN	$\eta' N$	$K\Sigma$		$\eta_c N$					
1		4261	56.9	3.8	8.1	3.9	17.0		23.4	1/2				
	(0, -1)			$\bar{K}N$	$\pi\Sigma$	$\eta \Lambda$	$\eta' \Lambda$	$K\Xi$	$\eta_c \Lambda$	1/2				
Λ*		4209	32.4	15.8	2.9	3.2	1.7	2.4	5.8					
		4394	43.3	0	10.6	7.1	3.3	5.8	16.3					

TABLE V: Mass (M), total width (Γ) , and the partial decay width (Γ_i) for the states from $PB \rightarrow PB$, with units in MeV.

	(I, S)	M	Г			Г	i			
N*	(1/2, 0)			ρN	ωN	$K^*\Sigma$			$J/\psi N$	
- 1		4412	47.3	3.2	10.4	13.7			19.2	1/3-
	(0, -1)			K^*N	$\rho\Sigma$	$\omega \Lambda$	$\phi \Lambda$	$K^*\Xi$	$J/\psi\Lambda$	1/2 ,
Λ*		4368	28.0	13.9	3.1	0.3	4.0	1.8	5.4	
		4544	36.6	0	8.8	9.1	0	5.0	13.8	

 $3/2^{-}$

TABLE VI: Mass (M), total width (Γ) , and the partial decay width (Γ_i) for the states from $VB \rightarrow VB$ with units in MeV.

LHCb observation of 2 pentaquarks

LHCb, Phys.Rev.Lett. 115 (2015) 072001 : Observation of two N* from $\Lambda_b^0 \rightarrow J/\psi K^- p$

å}K

1) $4380 \pm 8 \pm 29$ MeV, $205 \pm 18 \pm 86$ MeV, $P_c^+(4380)$ 2) $4450 \pm 2 \pm 3$ MeV, $39 \pm 5 \pm 19$ MeV, $P_c^+(4450)$

The preferred J^P assignments are of opposite parity, with one state having spin 3/2 and the other 5/2.

$\bar{D}\Lambda_{c} - \bar{D}\Sigma_{c}$ and $B\Lambda_{b} - B\Sigma_{b}$ dynamical coupled channel study C.W.Shen, Roechen, Meissner, Zou, CPC42(2018) 023106

More pentaquarks with hidden beauty than with hidden charm

Conclusion

Similar to deuteron, there are many hadronic molecules

Most newly observed exotic states fit into this picture

F.K.Guo, C.Hanhart, U.Meissner, Q.Wang, Q.Zhao, B.Zou, "Hadonic molecules", **Rev.Mod.Phys.90** (2018)015004