Preliminaries : a bit more on QCD and a bit on complex calculus
Causality and Analyticity.
Scattering in non-relativistic quantum mechanics.

Kinematics of relativistic scattering and decays.

Relativistic partial wave analysis, unitarity, analyticity and resonances.
General parameterizations: N/D, K-matrix, connection with lattice QCD.
Physics of high energy collisions.
Regge limit and the Veneziano amplitude.
New hadrons observed in particle decays?

H.M.Nussenzveig, Causality and Dispersion relations V.Gribov, Strong Interactions of Hadrons at High Energies V.Gribov, Theory of Complex Angular Momentum M.Perl, High Energy Hadron Physics

IU Online Course, P665, Fall 2019
E-mail Adam Szczepaniak if you are interested

- Observables are smooth, analytical functions of variables. Physics law, constraints are manifested in singularities (poles, branch points)
- Cauchy theorem is a powerful tool to connect observables at different values of variables
- Physics is on 1st sheet but interesting phenomena happen on other sheets connected by analytical continuation, eg. Breit-Wigner formula

Identifying resonances

Data

- Experimental or lattice signatures cross section bumps and dips, energy levels

Reaction amplitudes

- Theoretical signatures (complex plane singularities: poles, cusps)

QCD Structure

- What is the interpretation (constituent quarks, molecules, ...) ?

Theoretical uncertainty

Hybrids

Mesonic-Molecules

What are the constituents of hadrons, (quarks and gluons) ?
small world $\left(10^{-15} \mathrm{~m}\right)$
of fast ($\mathrm{v} \sim \mathrm{c}$) particles
exerting ~1T forces !!!

$$
\hbar=c=1
$$

$[$ length $]=[$ time $]=[\text { energy }]^{-1} \quad$ Unit energy $=1 \mathrm{GeV}$
$=[\text { momentum }]^{-1}$
Unit length $=1 \mathrm{GeV}^{-1}=0.197 \mathrm{fm}$

In relativistic quantum mechanics (QFT) particles are emergent phenomena

(i.e. fields are not physically measurable but their "consequences" are, cf. potential vs electric field density)
"excitation of the aether" \rightarrow field

collective motion \rightarrow particle

$$
\mathrm{H}=\mathrm{H}_{\mathrm{h} . \mathrm{o}}=\text { harmonic oscillators }
$$

"bare" particles: eigenstates of $\mathrm{H}_{\text {h.o. }}$

Bare particles are eigenstates of free Hamiltonian ${ }^{\circ}$

"Bare (free)" particles of QCD: quarks and gluons
e.g. because of asymptotic freedom measured in high energy collisions

- Gluon ~ 8 copies of a photon
- Photons do not cary electric charge : they only interact the matter (e.g.) electrons that do carry charge
- Gluons carry charge, i.e. interact with each other and with quarks.

Legendre transformation
$H\left(p_{i}, q_{i}\right)$

$L\left(q_{i}, \dot{q}_{i}\right)$

Easy to interpret Hard to calculate (particles, states, operators, etc.)
"Easy" to calculate Hard to interpret path integral, classical solution (solitons), etc.

QED vs QCD

QED

- Bare particles are eigenstates of free Hamiltonian. If interactions are weak (e.g. QED) the "bare particle" ~ observed particle $=$ (interacting particles)

- Bound states, aka positronuim require all orders, but can nevertheless be understood in terms of "bare" particles (choosing the "right gauge" = degrees of freedom is crucial)

QCD

- Quarks in hadrons have the effective color charge $e>3-4$. Therefore there is in principle no reason for them to retain their identify in presence of strong interactionsbut it seems they do

AN SO_{3} MODEL FOR STROMG INTERACTION SYMETRY AND ITS BREAKIMG II *)
G. 2 weig ${ }^{* *}$)

CERR--Weneva

ABSTRACT

Both mesons and baryons are constructed from a set of three fundamental particles called aces. The aces break up into an isospin doublet and singlet. Each ace carries beryon number $1 / 3$ and is iractionally charged. SU_{3} (but not the Bightfold way) is adopted as a higher symmetry for the etrong interactions. The breaking of this symnetry is assumed to be universal, being due to mass differences among the soes. Extensive space-time and group theoretic structure is then predicted for both mesons and baryons, in agreement with existing experimental information. Quantitative speculations are presented concerning resonances that have not as yet been definitively classified into representations of SO_{3}. A weak interaction theory based on right and left handed aces is used to predict rates for $|\Delta s|=1$ baryon leptonic decays. An experimental search for the aces is suggested.
*) Version I is CERY preprint 8182/4H.401, Jan. 17, 1964.
**) This work was supported by the J.S. Air Force Office of Scientific Research and the National Academy of Scientific Researoh and the Nations

A SCHEMATIC MODEL of baryons and mesons *

M. GELL-MANN

Calijornia Institute of Technology, Pasadena, Califomia
Received 4 January 1964

If we assume that the strong interactions of baryons and mesons are correctly described in terms of the broken "eightfold way" $1-3$, we are tempted to look for some fundamental explanation of the situation. A highly promised approach is the purely dyteracting particles within which one may try to derive isotopic spin and strangeness conservation and broken elghtfold symmetry from self-consistency alone ${ }^{4)}$. Of course, with only strong interactions, the orientation of the asymmetry in the unitary way the selection of specific components of the Fspin by electromagnetism and the weak interactions determines the choice of isotopic spin and hypercharge directions

Even if we consider the scattering amplitudes of strongly interacting particles on the mass shell only magnetic, and gravitational interactions by means of dispersion theory, there are still meaningful and important questions regarding the algebraic proper ties of these interactions that have so far been discussed only by abstracting the properties from a
formal field theory model based on fundamental entities ${ }^{3}$) from which the baryons and mesons are built up.

If these entities were octets, we might expect the underlying symmetry group to be SU(8) instead of triplets as fundamental objects. A unitary triplet t consists of an isotopic singlet s of electric charge (in units of e) and an isotopic doublet (u, d) with charges $z+1$ and z respectively. The anti-triplet has, of course, the opposite signs of the charges. Complete symmetry among the members of the
triplet gives the exact eightfold way, while a ma difference, for example, between the isotopic doublet and singlet gives the first-order violation.

For any value of z and of triplet spin, we can construct baryon octets from a basic neutral baryon singlet b by taking combinations (bt f), ($\mathrm{b} t \mathrm{tff}$), and $\mathbf{8}$, while from (bttit) we get $\mathbf{1}, \mathbf{8}, \mathbf{1 0}, \overline{\mathbf{1 0}}$, and 27. In a similar way, meson singlets and octets can be made out of ($t \mathrm{t})$, ($(\mathrm{t} t \mathrm{t} \mathrm{t})$, etc. The quantum num-
ber n_{t} - n_{t} would be zero for all known baryons and mesons. The most interesting example of such a model is one in which the triplet has spin $\frac{1}{2}$ and $z=-1$, so that the four particles $d, \quad \mathrm{u}^{0}$ and b xhibit a parallel with the leptons
Aslucted if we allow non-integreme can be charges. We can dispense entirely with the basic baryon b if we assign to the triplet t the following properties: spin $\frac{1}{2}, z=-\frac{1}{3}$, and baryon number $\frac{1}{3}$. We then refer to the members $u^{\frac{1}{3}}, \mathrm{~d}^{-\frac{1}{5}}$, and $\boldsymbol{s}^{-\frac{1}{3}}$, of anti-triplet as anti-quarks $\overline{\mathrm{a}}$. Baryons can now be constructed from quarks by using the combinations (qqq), ($q q q q \bar{q})$, etc., while mesons are made out of ($q \bar{q}$), ((qq $\bar{q} \bar{q}$), etc. It is assuming that the lowes baryon configuration ($\mathrm{q} q \mathrm{q}$) gives just the representhe lowest meson configuration ($q \bar{q}$) similarly give just 1 and 8 .
A formal mathematical model based on field theory can be built up for the quarks exactly as for $\mathrm{p}, \mathrm{n}, \mathrm{A}$ in the old Sakata model, for example 3) with all strong interactions ascribed to a neutral
vector meson field interacting symmetrically with the three particles. Within such a framework, the electromagnetic current (in units of e) is just

$$
\mathbf{i}\left\{\frac{2}{3} \mathbf{u} \gamma_{\boldsymbol{\alpha}} \mathbf{u}-\frac{1}{3} \mathbf{d} \gamma_{\boldsymbol{\alpha}} \mathbf{d}-\frac{1}{3} \mathbf{s} \gamma_{\boldsymbol{\alpha}} \mathbf{s}\right\}
$$

or $F_{3 \alpha}+F_{8} / / \sqrt{3}$ in the notation of ref. 3). For the weak current, we can take over from the Sakata model the form suggested by Gell-Mann and Levy 7), amely i $\mathrm{p} \gamma_{a}\left(1+\gamma_{5}\right)(n \cos \theta+A \sin \theta)$, which gives in the quark scheme the expression ${ }^{*}$

$$
\mathrm{i} \overline{\mathrm{u}} \gamma_{\alpha}\left(1+\gamma_{5}\right)(\mathrm{d} \cos \theta+\mathrm{s} \sin \theta)
$$

- Work suppcrted in part by the U.S.Atomic Energy Commission. $\stackrel{\text { This it }}{\text { ref. }}$
ref. 5).
 and bo discussed above we mould take the weak cur-

Discovery of quarks e.g. the J / Ψ

A narrow resonance was discovered in the 1974 November revolution of particle physics" in two reactions:

Proton $+\mathrm{Be}=>\mathrm{e}^{+} \mathrm{e}^{-}+$anything at the BNL J.J.Aubert et al., "Experimental observation
of a heavy particle J," Phys. Rev. Lett. 33, I404 (1974).

$$
J / \psi=c \bar{c}
$$

凹

Charmonium spectrum

Electron

J / ψ is a bound state of $\overline{\mathrm{c}} \mathrm{c}$

Light mesons

Light (u,d,s) Mesons :
Flavor $=8+$ I $\left(\mathrm{SU}_{\mathrm{f}}(3)\right)$
Spin $S=I / 2 \times I / 2=0+I(S U(2)){ }^{\text {к }}$
Orbital L = 0, $1,2 \ldots \quad(\mathrm{O}(3))$
Radial $n=0, I, 2 \ldots$ (various)

S,L => J,Parity (+,-), Charge conjugation)

$$
P_{Q}=-P_{\bar{Q}}
$$

$$
\pi=0^{-+} \rightarrow L=0, S=0, I=1
$$

$\rho_{2}=2^{--} \rightarrow L=$ even $=2, S=1, I=1$
$C|Q\rangle=|\bar{Q}\rangle \quad 8$

$J^{P C}$	$I=1$	$I=0$
J^{-+}	π_{J}	η_{J}
J^{--}	ρ_{J}	ω_{J}
J^{+-}	b_{J}	h_{J}
J^{++}	a_{J}	f_{J}

$$
\left.\left.\left.|B[8]\rangle=\mid \text { Flavor }\rangle_{8_{M_{A}}} \times \mid \text { Spin }\right\rangle_{8_{M_{A}}}+\mid \text { Flavor }\right\rangle_{8_{M_{S}}} \times \mid \text { Spin }\right\rangle_{8_{M_{S}}}
$$

fully symmetric wave function (antisymmetric does not work!) Color makes it into fully antisymmetric to respect Pauli principle
H. J. Lipkin

FERMILAB-Conf-84/125-T November, 1984

better then I0\% accuracy !!

quark model

$$
\begin{aligned}
& J=L+S \quad \quad{ }^{(2 S+1)} L_{J} \\
& \mathrm{P}=(-1)^{\mathrm{L}+1} \\
& C=(-1)^{L+S} \quad{ }^{1} S_{0}=0-+ \\
& G=C(-1)^{I} \quad{ }^{3} S_{1}=1^{--} \\
& \longrightarrow \text { orbital excitations } a_{2}, f_{2}, f^{\prime}, K_{2} \quad 2^{++} \\
& L=0 \quad \begin{array}{lll}
\rho, \omega, \phi, K^{*} & 1^{--}
\end{array} \quad L=1 \quad a_{1}, f_{1}, f_{1}^{\prime}, K_{1} \quad 1^{++} \\
& a_{0}, f_{0}, f^{\prime}, K_{0} \quad 0_{0}^{++} \\
& b_{1}, h_{1}, h_{1}^{\prime}, K_{1} 1^{+-} \\
& \left|J^{P C}, n\right\rangle \rightarrow \Psi^{J^{P C}}, n\left(\mathbf{r}_{q \bar{q}}, m_{q} m_{\bar{q}}, f_{q} f_{\bar{q}}\right) \delta_{c_{q} c_{\bar{q}}} \\
& S+L=J, \quad \Psi\left(\mathbf{r}_{q \bar{q}}\right) \rightarrow \Psi\left(\left|\mathbf{r}_{q \bar{q}}\right|\right) \\
& H=\frac{\mathbf{p}_{q}^{2}}{2 m_{q}}+\frac{\mathbf{p}_{\bar{q}}^{2}}{2 m_{\bar{q}}}+V_{C}\left(r_{q \bar{q}}\right)+V_{S S}+V_{L S}+V_{T}+V_{F} \\
& m_{u} \sim m_{d} \sim 300 \mathrm{GeV} \\
& \text { constituent quarks } \\
& m_{u} \sim m_{d} \sim \text { few } \mathrm{GeV} \\
& \text { bare quarks }
\end{aligned}
$$

QCD

$$
\begin{gathered}
L=-\frac{1}{4} F_{\mu \nu}^{a} F_{\mu \nu}^{a}-\bar{\psi}\left(\gamma_{\mu} D_{\mu}+m\right) \psi \\
F_{\mu \nu}^{a}=\partial_{\mu} A_{\nu}^{a}-\partial_{\nu} A_{\mu}^{a}+g f^{a b c} A_{\mu}^{b} A_{\nu}^{c} \\
D_{\mu}=\partial_{\mu}+i g A_{\mu}^{a} T^{a} \\
{\left[T^{a}, T^{b}\right]_{i j}=i f^{a b c} T_{i j}^{c}}
\end{gathered}
$$

Variables:

Parameters: g,m
finite energy, localized solutions: solitons (monopoles, vortices , ...)

The QCD vacuum is not empty. Rather it contains quantum fluctuations in the gluon field at all scales. (Image: University of Adelaide)

> Monopoles have been long speculated as candidate gluon filed configurations responsible for confinement
in "empty vacuum"

Dual Type-II supper conductor
QED
electric current screens magnetic lines
magnetic current screens electric lines

$$
H=H_{0}+V \quad H_{0}=\int d \mathbf{x} m_{0}|\psi(\mathbf{x})|^{2}
$$

Mean field approximation Hartree + Fock (BCS theory)

$$
V=\int d \mathbf{x} d \mathbf{y}|\psi(\mathbf{x})|^{2} V(\mathbf{x}-\mathbf{y})|\psi(\mathbf{y})|^{2}
$$

$\left.\left.|\psi(\mathbf{y})|^{2} \rightarrow\langle | \psi(\mathbf{y})\right|^{2}\right\rangle=$ condensate
ground state contains a condensate of bare quarks

Instantaneous potential between (color) charges, e.g. Coulomb + Linear

Confinement in QCD

e.g. absence of isolated quarks applies to both screening and confinement
$\int_{\partial V} \vec{E} \cdot d \vec{S}=Q \sim e^{-R / \lambda_{D}}$

- absence of isolated quarks

In absence of an order parameter we have to content with properties of confinement:

- linearly rising potential -Regge trajectories
- Casimir and N -ality scaling -string behavior

condensate (i.e. electrons in metal)

QCD vacuum and the role of gluons

Gluons are responsible for confinement (aka effective potential between color charges) and are confined (aka contribute to the color charge)

Coulomb gauge
$\nabla A^{a}(x)=0$

IT indIANA UNIVERSITY J Jefferson Lab

Coulomb gauge Hamiltonian

$$
B_{i}^{a}=\nabla_{j} A_{k}^{a}-\nabla_{k} A_{j}^{a}+g f^{a b c} A_{j}^{b} A_{k}^{c}
$$

$$
\begin{gathered}
H=\frac{1}{2} \int d \mathbf{x}\left[\mathcal{J}^{-1} \vec{\Pi}^{a} \mathcal{J} \vec{\Pi}^{a}+\stackrel{\rightharpoonup}{B}^{a} \vec{B}^{a}\right] \\
+\int d \mathbf{x} \psi^{\dagger}\left[-i \vec{\alpha}\left(\vec{\nabla}-i g A^{a} T^{a}\right)+\beta m\right] \psi \\
\mathcal{J}(A)=\operatorname{Det} \vec{\nabla} \mathcal{D}(\mathcal{A}) \\
+\frac{g^{2}}{2} \int d \mathbf{x} d \mathbf{y} \mathcal{J}^{-1} \rho^{a}(\mathbf{x}) K_{a b}[A](\mathbf{x}, \mathbf{y}) \mathcal{J} \rho^{b}(\mathbf{y}) \\
K=\frac{1}{\vec{\nabla} \mathcal{D}(A)}\left(-\vec{\nabla}^{2}\right) \frac{1}{\vec{\nabla} \mathcal{D}(A)} \quad \rho^{a}=f^{a b c} \vec{A}^{b} \vec{\Pi}^{c}+\psi^{\dagger} T^{a} \psi \\
H\left(\frac{\delta}{\delta A}, A\right) \psi[A]=E \Psi[A], \quad \int \mathcal{D} A \mathcal{J}|\Psi[A]|^{2}=\langle\mid\rangle \\
\bar{H}=\mathcal{J}^{1 / 2} H \mathcal{J}^{-1 / 2}, \bar{\Psi}=\mathcal{J}^{1 / 2} \Psi \quad \int \mathcal{D} A|\bar{\Psi}[A]|^{2}=\langle\mid\rangle
\end{gathered}
$$

$$
\begin{array}{cc}
H_{0} \quad \text { is a h.o. } & H=H_{0}+g V \\
|0\rangle \sim \exp \left(-\int d x d y A(x) \omega_{0}(x-y) A(y)\right)
\end{array} \quad E=E_{0}+g E_{1}+g^{2} E_{2}+\cdots
$$

calculate E for QQ in the perturbative QCD ground state

Confining Potential and the gluon condensate

$$
\begin{gathered}
H=H_{k i n}+V \quad H=H_{k i n}+V \\
V=\int d \mathbf{x} d \mathbf{y} \rho(\mathbf{x}) K[\mathbf{A}, \mathbf{x}, \mathbf{y}] \rho(\mathbf{y}) \\
K \rightarrow-\frac{g^{2}}{\nabla^{2}}=\frac{\alpha}{|\mathbf{x}-\mathbf{y}|}={ }_{x}^{*} V+\int d \mathbf{x} d \mathbf{y} \rho(\mathbf{x} V(\mathbf{x}-\mathbf{y}) \rho(\mathbf{y})
\end{gathered}
$$

 of gluons. color charge

- Coulomb "Potential" between external (i.e. quark charges) depends on the distribution
- In presence of a gluon condensate it produces a Confining force been external

Џ

exotic quantum numbers

$$
\begin{aligned}
& P_{q \bar{q}}=(-1)^{L+1} \\
& C_{q \bar{q}}=(-1)^{L+S} \\
& J_{g}^{P C}=1^{+-} \\
& \text {JPC glue } \\
& \downarrow \begin{array}{c}
\text { jecce } \\
\downarrow
\end{array} \\
& 1^{+-} \times 0_{S_{Q \bar{Q}}}^{-+}=1^{-} \\
& 1^{+-} \times 1_{S_{Q \bar{Q}}^{-}=1}^{--}=0^{-+}, 1^{-+}, 2^{-+} \\
& J P C=1^{-+} \text {is not a qq state }
\end{aligned}
$$

new multiplets from lattice

Liaht quark exotic candidate

$\pi^{-} p \rightarrow \eta \pi^{-} p$

$\mathrm{M}=1370 \pm 16_{-30}^{+50} \mathrm{MeV} / \mathrm{c}^{2}$ $\Gamma=385 \pm 40_{-105}^{65} \mathrm{MeV} / \mathrm{c}^{2}$

$$
\pi^{-} p \rightarrow \eta \pi^{0} n
$$

search for

Need to be confirmed

$$
\pi^{-} p \rightarrow \rho^{0} \pi^{-} p
$$

$\pi_{2}^{-} \rightarrow \rho^{0} \pi^{-}$FIG. 25: (a) The $1^{-+} 1^{+}{ }_{P}$-wave $\rho \pi$ partial wave $\rho^{0} \rightarrow \frac{\text { charged mode }\left(\pi^{-} \pi^{-} \pi^{+}\right) \text {for the high-wave set PWA a }}{\pi_{\text {ow }} \text { Wave set PWA and (b) the phase difference } \Delta \Phi \text { b }}$ the 2^{++}and 1^{-+}for the two wave sets.

$1.4 \quad{ }^{1.6} \mathrm{GeV} / \mathrm{c}^{1.8}$
partial wave
ve set PWA a
erence $\Delta \Phi \quad \mathrm{b}$.

$$
\Gamma=\left(269 \pm 21_{-64}^{+42}\right) \mathrm{MeV} / c^{2}
$$

กु) $800 E \mathrm{E}^{-+} 1^{+} \rho \pi \mathrm{P} \quad \stackrel{-300}{-350}{ }^{-300} \quad \Delta \phi\left(1^{+} 1^{+} \rho \pi \mathrm{P}-1^{+} 0^{+} \rho \pi \mathrm{S}\right)$

$$
\pi^{-} p \rightarrow \pi_{2}^{-}(1600) p
$$

QCD: There are many other possible color singlets.

dibaryon

diquark + di-antiquark

pentaquark

$q \bar{q} g$ hybrid

- QCD vacuum has gluon condensate in the form color monopolies, vortices,...
- The condensate leads to an effective, confining potential between color charges
- Light quarks propagating through this medium acquire effective mass
- Static color charges (i.e. "very heavy" quarks) inserted into the vacuum polarize the condensate and change the background gluon distribution
- For large separation between the charges this leads to formation of a chromo electric flux tube (aka dual superconductor)
- For small separation between charges, the effect of vacuum polarization can be described as quasi-particles.
- Once the have quarks are allowed to move the polarized gluon filed (the quasiparticle of the flux tube) can result in a new type of hadrons -> hybrid mesons or baryons.

$$
z=a+b i \rightarrow f(z)=\operatorname{Re} f(z)+i \operatorname{Im} f(z)
$$

Elementary functions: you can also think of them as maps of one complex plane (z) to another ($\mathrm{f}(\mathrm{z})$): $\mathrm{z} \rightarrow \mathrm{f}(\mathrm{z})$

To define a function we can use the algebraic relations e.g

$$
f(z)=\sqrt{z} \quad \text { is such that } \quad z=f(z) \times f(z)
$$

- Continuity imposes very strong conditions of functions (much stronger than in the case of real variables)
- "Smooth" (analytic) functions are "boring" all "action" is in the singularities (poles, cuts)
- Singularities determine functions "far away" from location of the singularity (e.g. local charge determines electric field)
- Physical observables are functions of real parameters, however physics law can be generalized to complex domains and become "smooth". Any "constraint" results in singularities.

Often the mapping is not "one-to-one" and one needs to be careful in defining domains which give a unique value for the function, e.g. is

$$
\sqrt{-25}=+5 I \text { or }-5 I ?
$$

$$
z=|z| e^{i \phi}
$$

$$
\sqrt{z} \equiv \sqrt{|z|} e^{i \frac{\phi}{2}}
$$

$$
\sqrt{z} \sqrt{z}=\sqrt{|z|} e^{i \frac{\phi}{2}} \sqrt{|z|} e^{i \frac{\phi}{2}}=|z| e^{i \phi}
$$

$$
\text { using } \quad \phi=[-\pi, \pi)
$$

$$
\text { or } \quad \phi=[0,2 \pi)
$$

gives different results for \sqrt{z}
$\sqrt{z} \equiv \sqrt{|z|} e^{i \frac{\phi}{2}}$

- using $\phi=[-\pi, \pi)$ gives square root that is continuous near the positive real axis

- using $\phi=[0,2 \pi)$
gives square root that is discontinuous near the positive real axis
$\sqrt{1-i \epsilon} \sim-1$
In both case it has the same value when approaching the positive real axis rom above
A. $z \rightarrow \sqrt{z^{2}-1}$

$$
\sqrt{z^{2}-1}=\sqrt{r_{1} r_{2}} e^{i \frac{\phi_{1}+\phi_{2}}{2}}
$$

Џ momanumvessir Uefferson Lab
B. $z \rightarrow \sqrt{z^{2}-1}$

and use principal branches

$$
=\sqrt{z-1} \sqrt{z+1}
$$

$\mathrm{f}(\mathrm{z})$ is differentiable (holomorphic) if $\lim _{z \rightarrow z_{0}} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}} \equiv f^{\prime}\left(z_{0}\right)$ exists
write $z=x+i y$ and $f(z)$ as $f(z)=u(x, y)+i v(x, y)$. Since the procedure of taking the limit in definition of $f^{\prime}\left(z_{0}\right)$ is independent of the path taken in $z \rightarrow z_{0}$, you can take two independent paths e.g. path 1: $x=x_{0}+\varepsilon, y=y_{0}$ and path 2: $x=x_{0}, y=y+\varepsilon$: Cauchy relations:

$$
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y}, \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}
$$

This implies $\Delta u=\Delta v=0$ where Δ is 2-dim Laplacian u, v : harmonic functions

Line integrals: given a curve C in the complex plane parametrized by a real number $0 \leq t \leq 1, t \rightarrow z(t)=x(t)+i y(t)$ the integral of f over C is defined by

$$
\int_{C} f(z) d z=\int_{t=0}^{1} f(z(t)) \frac{d z}{d t} d t=\lim _{\left|\Delta z_{n}\right| \rightarrow 0, N \rightarrow \infty} \sum_{n=1}^{N} f\left(a_{n}\right) \Delta z_{n}
$$

note: this is an ordered path
We can estimate the integral: if $|f(z)| \leq M>0$ along C then

$$
Z(0)=Z_{0}
$$

$$
\left|\int_{C} f(z) d z\right| \leq M s \quad \begin{aligned}
& \text { where } s \text { it the length } \\
& \text { of the path }
\end{aligned}
$$

$$
Z(1)=Z_{N}
$$

Cauchy-Goursat theorem: If $f(z)$ is holomorphic in some region G and C is a closed contour (consisting of continuous or discontinuous cycles, double cycles, etc.) then

$$
\oint f(z) d z=0 \quad \text { (converse is also true) }
$$

The Cauchy integral formula: if $f(z)$ holomorphic in $G, z_{0} \in G$, and C a closed curve (cycle), which goes around z_{0} once in positive (counterclockwise) direction, then

$$
f\left(z_{0}\right)=\frac{1}{2 \pi i} \oint_{C} \frac{f(z) d z}{z-z_{0}}
$$

$$
\begin{aligned}
& 0= \oint_{C^{\prime}}=\lim _{\epsilon \rightarrow 0}\left[\int_{L_{1}}+\int_{L_{2}}+\int_{R}+\int_{C_{\epsilon}}\right]=\lim _{\epsilon \rightarrow 0} \int_{R}+\int_{C_{\epsilon}} \\
& \int_{R} \frac{f(z) d z}{z-z_{0}}=f\left(z_{0}\right) \int_{R} \frac{d z}{z-z_{0}}+\int_{R} \frac{f(z)-f\left(z_{0}\right)}{z-z_{0}} d z \\
& \varepsilon \rightarrow 0: \quad-2 \pi i \quad O(\epsilon) \rightarrow 0 \\
& z-z_{0}=\epsilon e^{i \phi}-2 \pi i f\left(z_{0}\right)+\int_{C}=0
\end{aligned}
$$

Integrals:

$\mathrm{y}=$ unit circle

$\int_{\gamma} \frac{d z}{z}$ $\int_{\gamma^{\prime}} \frac{d z}{z}$

$\mathrm{y}^{\prime}=$ unit square

III indanauniversity Jefferson Lab
$\int_{-1}^{1} d x \frac{1}{\sqrt{1-x^{2}}}=\pi$
$\int_{1}^{\infty} \frac{d x}{x \sqrt{x^{2}-1}}=\frac{\pi}{2}$

III moanaunversiry Jefferson Lab

Analytical continuation

For real functions it does not work

Analytical continuation

Let $f_{1}(z)$ be holomorphic in G_{1} and $f_{2}(z)$ in G_{2}, G_{1} and G_{2} intersect on an arch A (or domain D), and $f_{1}=f_{2}$ on A (or D) then f_{1} and f_{2} are analytical continuation of each other and

$$
f(z)=\left\{\begin{array}{l}
f_{1}(z), z \in G_{1} \\
f_{2}(z), z \in G_{2}
\end{array}\right.
$$

is holomorphic in the union of G_{1} and G_{2}

凹
$1+z+z^{2}+\cdots$ is holomorphic in $|z|<1$
$\int_{0}^{\infty} e^{-(1-z) t} d t \quad$ is holomorphic in $\operatorname{Re} \mathrm{z}<1$
$-\left(1+1 / z+1 / z^{2}+\cdots\right)$ is holomorphic in $|z|>1$
all these functions represent $f(z)=1 /(1-z)$ in different domains, which is holomorphic everywhere except at the point $z=1$

$f(s, t)=\sum_{n} f_{n}^{\prime}(t) s^{n}$

how analytical continuation happens in practice for scattering amplitudes

$$
f(s, t)=\sum_{n} f_{n}(s) t^{n}
$$

Continuation of integrals

what are the possibilities for $\mathrm{g}(\mathrm{s})$ to be singular?

$$
g(s)=\int_{C} d z f(z, s) d z
$$

$\mathrm{g}(\mathrm{s})$ can be singular at $\mathrm{s}_{0} \in \mathrm{G}$ only if

1. $f\left(z, s_{0}\right)$ in $z-$ plane has a singularity coinciding with the end points of the arc C (end-point singularity)
2. two singularities of $f, z_{1}(s)$ and $z_{2}(s)$, approach the arc C from opposite sides and pinch the arc precisely at $s=s_{0}$. (pinch singularity)
3. a singularity $z(s)$ tents to infinity as $s \rightarrow s_{0}$ deforming the contour with itself to infinity; one has to change variables to bring the point ∞ to the finite plane to see what happens.

$$
f(z)=\int_{-1}^{1} \frac{d x}{x-z}=\log (1-z)-\log (-1-z)
$$

where are the singularities ?

Before analytical continuation the result is on the 1st sheet !
ЏI momna unversiry Jefferson Lab

Analytical continuation takes us to

$$
f(z)=\int_{-1}^{1} \frac{d x}{x-z} \quad \mathrm{C}=[-1,1]
$$

when z approaches x deforming C allows to define a function $f(z)$ which changes continuously

Q: So on which sheet is physics
A: All. The 1st sheet is protected by analyticity. Other sheets have singularities which have physical interpretation

$$
A(s)=\frac{1^{\Gamma(s)=\sqrt{s-s_{s t}} \times \operatorname{rest}(\mathrm{s})}}{m^{2}-s-\operatorname{im\Gamma (s)}}
$$

$$
A(s)=\frac{1}{2-s-0.8 i \sqrt{s-1}}
$$

$$
A_{I}(s)=\frac{1}{2-s+0.8 \sqrt{1-s}}
$$

- Physics : s real i0 above the real axis
- Unitarity : cuts the real axis above thresholds.
- Analytical continuation to 2 nd sheet displays resonances, etc.
This formula is valid entirely on the 1 st sheet
There is no peak !!!

$$
A(s)=\frac{1}{2-s-0.8 i \sqrt{s-1}}
$$

This formula is valid on the 1 st sheet for $\operatorname{Im}(\mathrm{s})>0$ and 2 nd sheet for $\operatorname{Im}(\mathrm{s})<0$

- Observables are smooth, analytical functions of variables. Physics law, constraints are manifested in singularities (poles, branch points)
- Cauchy theorem is a powerful tool to connect observables at different values of variables
- Physics is on 1st sheet but interesting phenomena happen on other sheets connected by analytical continuation, eg. Breit-Wigner formula

Probing QCD resonances (using physical states)

- When (color neutral) mesons and baryons a smashed, their quarks overlap, "stick together" and form resonances (quasi QCD eigenstates). They are short lived and decay to lowest energy, asymptotic states (pions, K's, proton,...)
- Resonances are fundamental to our understanding of QCD dynamics because they are formed by all-order (aka beyond perturbation theory) interactions. Resonances challenge QFT practitioners to develop all orders calculations (still ways to go).
- (QCD) Resonance lead to extremely rich phenomenology, e.g. XYZ states, gluonic excitations, etc.
- In practice, one requires tools that relate asymptotic states before collision to asymptotic states after collision that include flexible parametrization of the microscopic dynamics. This is often referred to as amplitude analysis. The rest of these lectures will focus on this topic.

$$
\left[\begin{array}{c}
{\left[\frac{p^{2}}{2 m_{e}}-\frac{\alpha}{r}\right] \psi(r)=F \psi(r)} \\
\psi(r)=\frac{e^{-i k r}}{r}-S \frac{e^{+i k r}}{r}
\end{array}\right.
$$

$$
S=1+O(\alpha)
$$

Born approximation : "weak" perturbation (lowest order) to free motion

Resonances: particles interact to all orders (like bound states) but eventually decay (connect with asymptotically free states).
Their effect appears in the S-matrix : Compare
(1) and (2) !

$$
\left(k=i \alpha m_{e}\right)
$$

Actual relation depends on the type of problem (mechanics, Q.M., QFT, ...)
You will see similarities, though, i.e. absence of singularities on the physical sheet.

Conservation law i.e. probability deals with time dependent flow "messes with analyticity" and introduces singularities outside physical sheet.

$$
A_{\text {physical }}=A(s+i \epsilon) \rightarrow A(s=\text { complex })
$$

analytical continuation

- Scattering amplitude describes evolution between asymptotic states. The information related to formation of resonances is "hidden" in unphysical domains (sheets) of the kinematical variables.
- The "bump" in the right figure is an indication of a "hidden" phenomenon. To uncover it one needs to analytically continue outside the physical sheet.

- Resonances have minimum width before they become bound states
- Average velocity inside the Well is always finite

$$
\begin{aligned}
\Gamma & \sim \frac{1}{\tau} \sim \frac{v}{a} \\
\sim & \frac{k}{a} \sim \frac{\sqrt{E-V}}{a}
\end{aligned}
$$

Every pole is a resonance (positive energy finite lifetime) but not all resonances (poles) are connected to bound states

- Resonances move to $+\infty$ with wishing width
- Average velocity of the wave infinitesimal -> long time spend on top of the barrier

$$
H=\frac{p^{2}}{2 \mu}+V \quad V=\frac{\lambda}{2 \mu a^{2}} \delta(r-a) \quad \operatorname{dim} \lambda=-1
$$

"Relation" to QCD
Inside the shell $(0<r<a)$ particles are confined (like quarks in hadrons) The shell is thin allowing for free asymptotic states (hadron decays)

Method 1: In coordinate space (as before)

Method 2: Lippmann-Schwinger

$$
T=V+V G_{0} V+\cdots
$$

- For any strength of the potential there is an infinite number of resonances
- There is one pole in each strip $\quad(n-1) \pi<\mathfrak{R}\left(\beta_{n}\right)<n \pi(n=1,2, \cdots)$

$$
\beta_{n}=k_{n} a
$$

- as potential strength decreases :

$$
\beta_{n} \rightarrow\left(n-\frac{1}{2}\right)-i \infty
$$

- as potential strength increases :
$\beta_{n} \rightarrow n \pi\left(1-\frac{1}{1+A}\right)-i\left(\frac{n \pi}{A}\right)^{2}$
$A=\lambda / a$
- There are no potentials
- Particles and antiparticles are related by crossing
- There are NO exact, non perturbative methods in QFT (major challenge for mathematicians)
- Physics lows are manifested as singularities of analytical functions (observables)

First order of business: understand properties of reactions enforced by these general principles.

S-matrix properties (in relativistic theory)

- Related to transition probability

$$
\left.P_{f i}=|\langle f| S| i\right\rangle\left.\right|^{2}=\langle i| S^{\dagger}|f\rangle\langle f| S|i\rangle
$$

- Conservation of Probability = Unitarity

$$
\begin{aligned}
& \sum_{f} P_{f i}=1 \\
& \quad S^{\dagger} S=I
\end{aligned}
$$

$$
2 I m T_{f t}=\sum_{n} 2 \pi \delta\left(E_{i}-E_{n}\right) T_{f n}^{*} T_{n i}
$$

- Lorentz symmetry: T is a product of Lorentz scalars and covariant factors representing wave functions of external states, e.g for $\pi\left(k_{1}\right)+N\left(p_{1}, \lambda_{1}\right) \rightarrow \pi\left(k_{2}\right)+N\left(p_{2}, \lambda_{2}\right)$

$$
\bar{u}\left(p_{1}, \lambda_{1}\right)\left[A(s, t)+\left(k_{1}+k_{2}\right)_{\mu} \gamma^{\mu} B(s, t)\right] u\left(p_{2}, \lambda_{2}\right)
$$

- Crossing symmetry: the same scalar functions describe all process related by permutation of legs between initial and final states (only the wave function change)

$$
\begin{aligned}
& \pi\left(k_{1}\right)+\pi\left(-k_{2}\right) \rightarrow \bar{N}\left(-p_{1}, \mu_{1}\right)+N\left(p_{2}, \mu_{2}\right) \\
& \bar{v}\left(p_{1}, \mu_{1}\right)\left[A(s, t)+\left(k_{1}+k_{2}\right)_{\mu} \gamma^{\mu} B(s, t)\right] u\left(p_{2}, \mu_{2}\right)
\end{aligned}
$$

- Analyticity: The scalar functions are analytical functions of invariants

N-to-M scattering depends on $4(N+M)-(N+M)-10=3(N+M)-10$ invariants
e.g for 2-to-2: 2 invariants related to the c.m. energy and scattering angle

$$
\begin{aligned}
& \text { (p) } \\
& \begin{array}{l}
s=\left(p_{1}+p_{2}\right)^{2}=\left(E_{1, c m}+E_{2, c m}\right)^{2} \\
t=\left(p_{1}-p_{3}\right)^{2}
\end{array} \\
& t=m_{1}^{2}+m_{2}^{2}-2 E_{1, c m} E_{2, c m}+2\left|p_{1, c m}\right|\left|p_{2, c m}\right| z_{s} \\
& u=\left(p_{1}-p_{4}\right)^{2} \quad s+t+u=\sum_{i} m_{i}^{2} \\
& u=m_{1}^{2}+m_{4}^{2}-2 E_{1, c m} E_{4, c m}-2\left|p_{1, c m}\right|\left|p_{4, c m}\right| z_{s} \\
& 2 \pi \delta\left(E_{f}-E_{i}\right) i T=\langle c, d|(S-1)|a, b\rangle \\
& \text { Dimensions } \quad\left\langle p^{\prime}, \beta \mid p, \alpha\right\rangle=2 E(\mathbf{p}) \delta\left(\mathbf{p}_{f}-\mathbf{p}_{i}\right) \delta_{\alpha, \beta} \\
& T=(2 \pi)^{3} \delta\left(\mathbf{p}_{f}-\mathbf{p}_{i}\right) A(s, t, u) \\
& \text { r.h.s has dim }=-4
\end{aligned}
$$

$A(s, t, u)$ is a scalar function of mass dimension $=0$

How many independent variables describe

- Decay proces $A \rightarrow a+b+c$
- Three particle production $\mathrm{A}+\mathrm{B} \rightarrow \mathrm{a}+\mathrm{b}+\mathrm{c}$

We work in the c.m. frame $\quad \frac{\vec{S} \cdot \vec{p}}{|\vec{p}|}|p, \lambda\rangle=\lambda|p, \lambda\rangle$

$$
\left\langle p_{3}, \lambda_{3} ; p_{4}, \lambda_{4}\right| A\left|p_{1}, \lambda_{1} ; p_{2}, \lambda_{2}\right\rangle=A_{\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}}(s, t, u)
$$

Helicity states vs canonical spin states: $\quad S_{z}|p, m\rangle_{z}=m|p, m\rangle_{z}$

$$
\begin{aligned}
& |p, m\rangle_{z}=\Lambda(\vec{p} \leftarrow 0)|0, m\rangle_{z} \\
& |p, \lambda\rangle=R(\hat{p}) \Lambda(|\vec{p}| \hat{z} \leftarrow 0)|0, m\rangle_{z}
\end{aligned}
$$

Exercise show this: $|p, \lambda\rangle_{z}=\sum_{m=-S}^{S}|p, m\rangle_{z} D_{m, \lambda}^{S}(\hat{p})$

- Even though this looks non relativistic it is relativistic. Notion of LS amplitudes, LS vs. helicity relations are relativistic

$$
\eta=\text { naturally }
$$

Parity $\quad A_{\lambda_{1}, \lambda_{2}, \lambda_{3}, \lambda_{4}}(s, t, u)=\eta A_{-\lambda_{1},-\lambda_{2},-\lambda_{3},-\lambda_{4}}(s, t, u)$

How many independent scalar functions describe
$J / \Psi \rightarrow \Pi^{+} \pi^{-} \Pi^{0}$
$\gamma p->\pi^{0} p$

II indiana university Jefferson Lab

Crossing symmetry

$$
\bar{p}_{i}=-p_{i}=\left(-\vec{p}_{i},-E_{i}\right)
$$

$$
\mathrm{a}\left(\mathrm{p}_{1}\right)+\overline{\mathrm{c}}\left(\overline{\mathrm{p}}_{3}\right) \rightarrow \overline{\mathrm{b}}\left(\overline{\mathrm{p}}_{2}\right)+\mathrm{d}\left(\mathrm{p}_{4}\right)
$$

$a\left(p_{1}\right)+b\left(p_{2}\right) \rightarrow c\left(p_{3}\right)+d\left(p_{4}\right)$

$$
\mathrm{a}\left(\mathrm{p}_{1}\right)+\overline{\mathrm{d}}\left(\overline{\mathrm{p}}_{4}\right) \rightarrow \mathrm{c}\left(\mathrm{p}_{3}\right)+\overline{\mathrm{b}}\left(\overline{\mathrm{p}}_{2}\right)
$$

$$
\mathrm{E}_{\mathrm{c} . \mathrm{m}} \quad s=\left(p_{1}+p_{2}\right)^{2} \quad t=\left(p_{1}+p_{\overline{3}}\right)^{2} \quad u=\left(p_{1}+p_{\overline{4}}\right)^{2}
$$

$$
\operatorname{Cos}(\theta) \quad t=\left(p_{1}-p_{3}\right)^{2} \quad s=\left(p_{1}-p_{\overline{2}}\right)^{2} \quad t=\left(p_{1}-p_{3}\right)^{2}
$$

$$
\operatorname{Cos}(\theta) \quad u=\left(p_{1}-p_{4}\right)^{2} \quad u=\left(p_{1}-p_{4}\right)^{2} \quad s=\left(p_{1}-p_{\overline{2}}\right)^{2}
$$

$$
A_{\lambda_{1}, \cdots}^{(s)}(s+i \epsilon, t, u) \rightarrow \sum_{\lambda_{1}^{\prime}, \cdots}\left[D_{\lambda_{1}, \lambda_{1}^{\prime}}^{S_{1}} \cdots\right] A_{\lambda_{1}^{\prime}, \ldots}^{(t)}(s, t+i \epsilon, u) \rightarrow \cdots
$$

- The i ε is important. Function values at, e.g. $\mathrm{s}+\mathrm{i} \varepsilon$ vs $\mathrm{s}-\mathrm{i} \varepsilon$ are different !

Crossing Symmetry : Decays

$a\left(p_{1}\right)+b\left(p_{2}\right) \rightarrow c\left(p_{3}\right)+d\left(p_{4}\right)$

$$
A(s, t, u) \rightarrow A\left(M_{1}^{2}+i \epsilon, s+i \epsilon, t+i \epsilon, u+i \epsilon\right)
$$

- In decay kinematics, the decaying mass becomes a dynamical variable, (iع important)
- Crossing from one kinematical region (e.g. s-channel) to another (e.g. t-channel) requires taking the corresponding variables off the real axis and to the complex plane : analytical continuation.

For particles with spin $\quad A_{\lambda_{i}}(s, t)=16 \pi \sum_{J=-M}^{M}(2 J+1) f_{\lambda_{i}}^{J}(s) d_{\lambda, \lambda^{\prime}}^{J}(\theta)$

$$
f_{\lambda_{i}}^{J}(s)=\frac{1}{32 \pi} \int_{-1}^{1} d z_{s} A_{\lambda_{i}}(s, t(s, \theta)) d_{\lambda, \lambda^{\prime}}^{J}(\theta)
$$

- Wigner d-functions lead to kinematical singularities
- Threshold (barrier factors) originate from kinematical factors in relation between t and $\cos (\theta)$ (through dependence of A_{λ} on t)
- Unequal masses give lead to "daughter poles"
- Dynamical singularities : from dynamical (unitary cuts) in $\mathrm{A}(\mathrm{s}, \mathrm{t})$.

Analyticity

Feynman diagrams

$$
\begin{aligned}
& A\left(p_{1}, \cdots\right) \propto \int\left[\Pi_{j} d^{4} k_{j}\right] \frac{\text { polynomial in } \mathrm{k}_{j}}{\left(m_{q}^{2}-\left(p_{i}-k_{j}\right)^{2}-i \epsilon\right)\left(\left(k_{i}-k_{j}\right)^{2}-i \epsilon\right) \cdots} \\
& m^{2}-p^{2}=\left[m^{2}+\mathbf{p}^{2}\right]-\left(p^{0}\right)^{2} \\
& m^{2}-p^{2}=0 \rightarrow p^{0}= \pm\left(m^{2}+\mathbf{p}^{2}\right)^{1 / 2} \\
& \text { - Integrand becomes singular when } \\
& \text { intermediate states go on shell. } \\
& \text { - Thresholds for producing physical } \\
& \text { intermediate are the only reason why } \\
& \text { amplitudes are singular. } \\
& \text { - Production of intermediate states is related to } \\
& \text { unitarity. Thus we expect unitarity to } \\
& \text { determine singularities of the amplitudes. }
\end{aligned}
$$

On the role of is

$$
\operatorname{Im}\left[\frac{1}{\sqrt{m^{2}+\mathbf{p}^{2}} \mp i \epsilon-p^{0}}\right]= \pm \pi \delta\left(p_{0}-\sqrt{m^{2}+\mathbf{p}^{2}}\right)
$$

Causality: Determines domain of analyticity of reaction amplitudes as function of kinematical variables.

Unitarity: Determines singularities.
Crossing: Dynamical relation, aka reaction amplitudes in the exchange channel (forces) are analogous to amplitude in the direct channel (resonance)
These principles constrain the amplitude on the physical sheet. But on the unphysical sheet, there poles and other singularities, i.e. triangle singularity brains points, that arise from the underlying dynamics. Thus in reality it is the unphysical sheet which is of interest.

Amplitude analysis = make hypothesis about these singularities and use analytical continuation to obtain the amplitude on the physical sheet where you fit to data.

- Related to transition probability

$$
\left.P_{f i}=|\langle f| S| i\right\rangle\left.\right|^{2}=\langle i| S^{\dagger}|f\rangle\langle f| S|i\rangle
$$

- Conservation of Probability = Unitarity

$$
\begin{aligned}
& \sum_{f} P_{f i}=1 \\
& \quad S^{\dagger} S=I
\end{aligned}
$$

$$
2 \operatorname{Im} T_{f t}=\sum_{n} 2 \pi \delta\left(E_{i}-E_{n}\right) T_{f n}^{*} T_{n i}
$$

$$
2 \operatorname{Im} T_{f t}=\sum_{n} 2 \pi \delta\left(E_{i}-E_{n}\right) T_{f n}^{*} T_{n i}
$$

Consider elastic scattering of spineless particles

$$
\begin{array}{r}
\operatorname{Im} A(s, t)=\frac{\rho(s)}{16 \pi} \int \frac{d \Omega}{4 \pi} A\left(s, \cos \theta_{1}\right) A^{*}\left(s, \cos \theta_{2}\right) \\
\rho(s)=2 k_{c m}(s) / \sqrt{s}
\end{array}
$$

At fixed s, this is a complicated, integral relation w.r.t momentum transfer, t It is simplified (diagonalized) by expanding $\mathrm{A}(\mathrm{s}, \mathrm{t})$ in partial waves

$$
A(s, t)=16 \pi \sum_{l=0}^{\infty}(2 l+1) f_{l}(s) P_{l}(\cos \theta) \quad \operatorname{Im} f_{l}(s)=\rho(s)\left|f_{l}(s)\right|^{2}
$$

Properties of the partial wave, $\mathrm{f}_{\mathrm{i}}(\mathrm{s})$ (for fixed I as function of s):

- $f_{i}(s)$ is real for s below threshold
- $\operatorname{Im} f_{i}(s)$ is finite above threshold.
- $f_{l}(s)$ is analytical (since $A(s, t)$ is)

$$
f_{l}(s)=\frac{1}{32 \pi} \int_{-1}^{1} d \cos \theta P_{l}(\cos \theta) A(s, t(s, \cos \theta))
$$

for simplicity ignore singularities in t
\rightarrow Reflection theorem (Calculus 101): $\mathrm{f}_{\mathrm{l}}\left(\mathrm{s}^{*}\right)=\mathrm{f}_{\mathrm{l}}\left(\mathrm{s}^{*}\right)$

$$
\frac{1}{2 i}\left[f_{l}(s+i \epsilon)-f_{l}(s-i \epsilon)\right]=\rho(s) f_{l}(s+i \epsilon) f_{l}(s-i \epsilon)
$$

Lets look for a function, $f_{\| l}(s)$ that, for s-i is equal to $f_{1}(s+i \varepsilon)$. Theorem of analytical continuation implies there is only one such function

Second sheet

$$
f(s+i \epsilon)=\frac{f(s-i \epsilon)}{1-2 i \rho(s) f(s-i \epsilon)}
$$

> Singularity = Resonance at complex s when

Define for $\operatorname{Im} \mathrm{s}<0 \quad f_{I I}(s)=\frac{f(s)}{1-2 i \rho(s) f(s)}$

$$
f_{I I}(s-i \epsilon)=f(s+i \epsilon)
$$

This is analytical continuation of $f(s)$ below the real axis

$$
f(s)=\frac{1}{2 i \rho(s)}
$$

III indanauniversity JJefferson Lab

Breit-Wigner

$$
\begin{aligned}
& f(s)=\frac{g^{2} \sqrt{s_{t r}-s}}{m^{2}-s+g^{2} \sqrt{s_{t r}-s}} \quad \text { when Im } \mathrm{s}<0 \\
& m^{2}-s+i g^{2} \sqrt{s-s_{t r}} \\
& \rho(s)=\sqrt{s-s_{t r}} \\
& f_{I I}(s)=\frac{f(s)}{1-2 i \rho(s) f(s)} \quad=\frac{g^{2} \sqrt{s_{t r}-s}}{m^{2}-s+g^{2} \sqrt{s_{t r}-s}-2 i g^{2} \sqrt{s-s_{t r}}}
\end{aligned}
$$

when Im s < 0

$$
=\frac{g^{2} \sqrt{s_{t r}-s}}{m^{2}-s-i g^{2} \sqrt{s-s_{t r}}}
$$

- Evidence for resonance scattering : connection to QCD bound states.
- Kinematical range for resonance scattering.
- Features of high energy scattering : physics of cross channels
- Space-time interpretation of high and low energy scattering
- Dual models

$$
\begin{aligned}
& \sigma_{a+b \rightarrow a+b} \propto \int \frac{d t}{s^{2}}|A(s, t)|^{2} \\
& \sigma_{a+b \rightarrow X} \propto \frac{\operatorname{Im} A(s, 0)}{s} \quad \text { from unitarity }
\end{aligned}
$$

$$
\begin{aligned}
& \sigma_{a+b \rightarrow a+b} \propto \int \frac{d t}{s^{2}}|A(s, t)|^{2} \\
& \sigma_{a+b \rightarrow X} \propto \frac{\operatorname{Im} A(s, 0)}{s} \text { from unitarity }
\end{aligned}
$$

Resonance scattering

II indIANA university Jefferson Lab
$d \sigma \quad|A(s, t)|^{2} \quad$ Angular distribution: a few "wiggles"
$\frac{d \sigma}{d t} \propto \frac{|A(s, t)|^{2}}{s^{2}}$

$$
A(s, t)=\sum_{l}(2 l+1) f_{l}(s) P_{l}\left(z_{s}(t)\right)
$$

more pronounced forward/backward peaks as energy increases

- Due to confinement, we expect an infinite number of resonances (poles at positive energy - recall the potential shell example) of arbitrary large mass and spin.
- String/flux tube breaking leads to screening of color charge and these poles decay. As mass increases they coach to multi-particle final states. The poles are still there, but dive deeper into to complex plane and are more difficult to identify. However, when making a model it makes more sense to parametrize amplitude with BW resonances as compared to some arbitrary background functions.

$$
p=l / r
$$

- For $I_{\max } \sim 5$ and interaction range $\mathrm{r}_{0} \sim 0.5 \mathrm{fm}$ this gives $\mathrm{plab}<\sim 10 / \mathrm{fm} \sim 2 \mathrm{GeV}$, [or W ~ (2 P $\left.\mathrm{lab}_{\mathrm{lab}}\right)^{1 / 2} \sim 2 \mathrm{GeV}$]
- For resonance scattering

$$
A(s, t)=\sum_{l}(2 l+1) f_{l}(s) P_{l}\left(z_{s}(t)\right) \quad \rightarrow \quad A(s, t) \sim \frac{P_{l_{R}}\left(z_{s}(t)\right)}{s-s_{R}}
$$

Smooth behavior constant or powe " low fall off

$$
\frac{d \sigma}{d t}(s)=\frac{1}{s^{2}}|A(s, t)|^{2}
$$

$\sigma_{a+b \rightarrow X}=\frac{1}{s} \operatorname{Im} A_{a b \rightarrow a b}(s, 0)$

- s-dependence:
-many intermediate particles can be produced, unitarity becomes complicated and less useful.
- t-dependence:
-high partial waves become important, several Legendre functions are needed.
- There is universality in both s and t-dependencies: smooth (constant or falling s-dependence), and forward/(backward) peaking in t. The universality hints into importance of $t /(u)$ channel singularities.

As s increase and t is fixed the t-channel resonances (or singularities) stay close relative to s and u channel resonances

To obtain the amplitude in this limit need to add all t-channel resonances

Sum of a large number of particle productions at highs looks like an exchange of various resonances in the t-channel.

Use t-channel partial waves and analytically continue to larges
bout shute or vesounie

$$
A(s, t)=\sum_{l}(2 l+1) f_{l}(s) P_{l}(\cos \theta)
$$

converges if $|\cos \theta|<1:\left(e . g .1+x+x^{2}+\ldots=\right.$ finite for $\left.|x|<1\right)$

$$
\begin{gathered}
z=1+\frac{2 t}{s-4 m^{2}} \\
t=-\frac{(1-z)}{2}\left(s-4 m^{2}\right)<0 \text { for }|z|<1 \text { and } s>4 m^{2}
\end{gathered}
$$

"s-channel"

$$
s=-\frac{t-4 m^{2}}{2}\left(1-z_{t}\right)
$$

$$
\begin{gathered}
A(s, t)=\sum_{l}(2 l+1) f_{l}(t) P_{l}\left(z_{t}\right) \quad \text { "t-channel" } \\
t=-\frac{(1-z)}{2}\left(s-4 m^{2}\right)>4 m^{2} \text { for }|z|>1 \text { and } s<0
\end{gathered}
$$

$a+b \rightarrow c+d$
(e.g. what is the value of $1+x+x^{2}+\ldots$ when $x>1$?

$$
A(s, t)=\sum_{l}(2 l+1) f_{l}(t) P_{l}\left(z_{t}\right) \quad s=-\frac{t-4 m^{2}}{2}\left(1-z_{t}\right)
$$

The series converges for $\left|z_{t}\right|<1$ (cosine of scattering angle in the t-channel), i.e. in the t-channel physical region. We want to know $A(s, t)$ for in the s-channel physical region, in particular for large s , with corresponds to $\left|z_{t}\right| \gg 1$.
For example, assume $f_{l}(t)=\frac{1}{l-\alpha(t)}$ i.e. it has a pole (resonance) where $\alpha(\mathrm{t})=1$
$A(s, t) \sim J\left(z_{t}\right)=\sum_{l} \frac{z_{t}^{l}}{l-\alpha(t)} \quad$ for $\alpha<0$ and $\left|\mathrm{z}_{\mathrm{t}}\right|<1$ use $\quad \frac{1}{l-\alpha}=\int_{0}^{\infty} d x e^{-x(l-\alpha)}$
to obtain $J(z)=\int_{0}^{\infty} d x\left[\frac{e^{x \alpha}}{1+z e^{-x}}\right]=z^{\alpha} \int_{0}^{z} \frac{d y}{y^{\alpha+1}(1+y)} \quad y=z e^{-x}$
provides analytical continuation for $\alpha>0$ for large $z=z(s) \sim s$

$$
J(z)=-\frac{z^{\alpha} \pi}{\sin \pi \alpha}+z^{\alpha} \int_{z}^{\infty} \frac{d y}{y^{\alpha+1}(1+y)} \rightarrow-\frac{z^{\alpha} \pi}{\sin \pi \alpha} \quad z \rightarrow \infty
$$

this is analog of

$$
f(x)=1+x+x^{2}+\cdots
$$

$$
f(x)=\frac{1}{1-x}
$$

s-channel partial wave expansion $\quad A(s, t)=\sum_{l}(2 l+1) f_{l}^{(s)}(s) P_{l}\left(\cos \theta_{s}\right)$
t-channel partial wave expansion $\quad A(s, t)=\sum_{l}(2 l+1) f_{l}^{(t)}(t) P_{l}\left(\cos \theta_{t}\right)$
The amplitude at large-s (in the s-channel physical region) is dominated by a selected, infinite set of t-channel partial waves (t-channel resonances).

This sum is referred to as a Reggeon or a Regge exchange.
Since Reggeon is a collection of partial waves and partial waves have quantum numbers of resonances, so do Reggeon. They are like special kind of virtual particles. For example in perturbation theory pion we can talk about virtual, single pion exchange. A collection of all pion like exchange becomes a Reggion with pion quantum numbers. "Reggized pion"

Reggized
π
s-channel: multi-particle production
t-channel: collection of resonances: "Regge" exchanges

$$
A(s, t \sim 0) \sim i s^{\alpha(0)} \sim s \sigma_{t o t}
$$

* Exchange of t-channel partial wave with quantum numbers of the vacuum is called the Pomeron
(exchange of non-vacuum q.n. falls with energy)

Growing Radius, partons, saturation,...

* Where does to parton model come from
(fast moving, hadron, parton,etc)
adding correlated partons is beneficial (expansion not in g^{2} but in $\mathrm{g}^{2} \log \mathrm{~s}$)

$$
\frac{g^{2}}{s} \sum_{n} \frac{\beta^{n-1}(t)}{(n-1)!} \log ^{n-1} s \rightarrow s^{\alpha\left(-k_{\perp}^{2}\right)}
$$

$$
\alpha(t)=-1+\beta(t)
$$

... and in space-time assuming Pomeron $\alpha(0)=1$

$$
A\left(s, r_{\perp}\right) \sim \int d^{2} k_{\perp} e^{i k_{\perp} r_{\perp}} e^{\alpha\left(-k_{\perp}^{2}\right) \log s} \sim \frac{1}{\log (s)} e^{-r_{\perp}^{2} / \log (s)} \quad \text { hadron swells }
$$

$$
\Delta E \sim \frac{\mu_{\perp}^{2}}{x(1-x) p_{z}}
$$

$$
\begin{array}{c:c:c}
p_{z} \rightarrow \infty & (1-x) p_{z} \hat{} & \langle x\rangle^{\langle n\rangle}=\frac{p_{z}}{\mu} \quad\langle n\rangle \sim \log (s),
\end{array}
$$

random walk in transverse space
interaction when commensurate momenta

* long lived fluctuations finite <x>

$$
*\left\langle r_{\perp}\right\rangle \sim \sqrt{\langle n\rangle \frac{1}{\mu_{\perp}}} \sim \log ^{1 / 2}(s)
$$

* large-s behavior universal (Pomeron = vacuum pole, universal mid-rapidity)

$$
p=0
$$

Џ

$$
\langle M| H|M\rangle=O(1)
$$

$$
\left\langle M_{1}\right| H\left|M_{2} M_{3}\right\rangle=g=O\left(1 / \sqrt{N_{C}}\right)
$$

$$
\begin{aligned}
& \sim\left(\frac{1}{N_{c}}\right)^{Y} \times N_{c}=\frac{1}{N_{c}} \\
& \quad \sim \frac{\Gamma}{m^{2}-s-i \Gamma} \quad \Gamma=O\left(1 / N_{c}\right)=g^{2}
\end{aligned}
$$

Resonamce

ЏI monna unversiry Jefferson Lab

Dualities

planar diagrams may be considered as either s-channel or t-channel

Regge phenomena : sum of t-channel resonances determines large-s behavior of the sOchannel and vice versa.

$\mathrm{a}_{2} \sim 1+\exp (\mathrm{i} \pi a(t))$
$\rho \sim 1-\exp (i \pi a(t))$

In K-p scattering imaginary parts of a2 and rho add up In K+p they cancel!

II indiana university Jefferson Lab

dibaryon
u c
u
diquark + di-antiquark
$3 \times \overline{3}=8+1$

2 Mesons

$3 \times \overline{3}=8+1$

glueball
cinnef
$q \bar{q} g$ hybrid

Standard argument for non-existence of multi quark sates: they can fall apart to ordinary mesons and baryons

For example 2 quarks and 2 anti quarks can rearrange into 2 quark-antiquark pairs

But confinement requires quarks are connected by flux tubes and it is possible that certain multi quark configurations are more favorable than "fall apart configurations"

2 di quarks $=$ teraquark

Talk by G.Rossi
Hadronic states \rightarrow irreducible gauge invariant operators in QCD

Table IIa
Simplest mesons and baryons : colour structure and string picture

HADRON	gauge invariant operator	STRING PICTURE
$\mathrm{M}_{2}=q \bar{q}$ meson	$\bar{q}^{j}{ }_{2}\left(x_{2}\right)\left[p \exp \left(i g \int_{x_{1}}^{x_{2}} A_{H} d x^{p}\right)\right]_{j_{2}}^{j_{1}} q_{j_{1}}\left(x_{1}\right)$	x_{2} x_{1} \bar{q} ${ }^{q}$
$M_{0}=$ quarkless	$\operatorname{Tr}\left[\mathrm{P} \exp \left(\mathrm{ig} \oint \mathrm{A}_{\mathrm{u}} \mathrm{dx}{ }^{\mu}\right)\right]$	\qquad
$B_{3}=q 9 q$ baryon	$\begin{aligned} & j_{\varepsilon} j_{2} j_{3}\left[p \exp \left(i g \int_{x_{1}}^{x} A_{\mu} d x^{\mu}\right) q\left(x_{1}\right)\right]_{j_{1}} \\ & {\left[p \exp \left(i g \int_{x_{2}}^{x} A_{\mu} d x^{\mu}\right) q\left(x_{2}\right)\right]_{j_{2}}\left[P \exp \left(i g \int_{x_{3}}^{x} A_{\mu} d x^{\mu}\right) q\left(x_{3}\right)\right]_{j_{3}}} \end{aligned}$	

Other multiquark states
(from G. C. Rossi \& GV, Phys. Rep. 1982)

pentaquark dibaryon

${ }^{(a)} s^{\prime}$ is the invariant mass of the final state excluding the leading baryons.
${ }^{\text {th }}$ To estimate the s-behaviour we have taken $\alpha_{\mathrm{R}}=0.5$.
凹

Contribution to $\mathrm{B} \overline{\mathrm{B}}$ annihilation $\left(\mathrm{N}_{\mathrm{c}}=3\right)$
s-channel mesons are dual to t channel tetra quarks

$\mathrm{BB} \rightarrow \mathrm{B} \overline{\mathrm{B}}$ Junction duality diagrams annihilation	s-channel formation	Multiplicity	t-channel exchange	Slope
(a)				

[^0]
Veneziano Model

$$
f(s)=\frac{1}{K^{-1}(s)-i \Gamma(s)}
$$

Quadratically spaced radial trajectories
$K(s)=\sum_{r=1}^{\infty} \frac{g_{r}^{2}}{m_{r}^{2}-s} \rightarrow \sum_{r} \frac{1}{r^{2}-s} \sim \frac{\cos (\pi \sqrt{s})}{\sin (\pi \sqrt{s})}$
Linearly spaced radial trajectories (Veneziano)
$K(s) \sim \frac{\Gamma(a-s)}{\Gamma(b-s)}$
Veneziano amplitude : crossing symmetric:

$$
\begin{array}{r}
A(s, t)=\frac{\Gamma(1-\alpha(s)) \Gamma(1-\alpha(t))}{\Gamma(2-\alpha(s)-\alpha(t))} \\
\alpha(s)=a+b s
\end{array}
$$

relativistic h.o.

$\omega \rightarrow 3 \pi$

string of relativistic oscillators

QCD, loop representation, large- N_{c}, AdS/ CFT, ...

string revolution

Other effects of partial wave analyticity

Scalar particle scattering $1+2$-> $3+4$

$$
A_{l}(s)=\int d z_{s} A\left(s, t\left(s, z_{s}\right), u\left(s, z_{s}\right)\right) P_{l}(\cos \theta)
$$

Partial waves have "right hand" singularity (from s) and "left hand" (from t and u)
For example assume equal masses
For $s>4 m^{2}$ integral is finite

$$
t=-\frac{\left(s-4 m^{2}\right)}{2}\left(1-z_{s}\right)
$$

$$
A_{0}(s) \sim \int_{-1}^{1} d z_{s} \frac{1}{m_{e}^{2}+\frac{\left(s-4 m^{2}\right)}{2}\left(1-z_{s}\right)}
$$

For $s<4 m^{2}-m_{e}^{2}$ the detonator crosses 0 within integration limi, implying $A_{0}(s)$ has a cut for negative s

Scalar amplitudes have simple singularity structure, but partial waves a much more complicated. They also have kinematical singularities when spin and/or unequal masse are involved

- Thresholds are "windows" to singularities (particles, visual states, forces") located on the nearby unphysical sheet.
- They appear as cusps (if below threshold) or bumps (is above)
- a0(980),
- a1(1420),
- Lambda(1405),
- XYZ,
\qquad

earby unphysical sheet.
bound state : pole on the physical energy plane
virtual state : pole on "unphysical sheet" closest the physical region

Amplitude singularities

- Singularities of partial waves are complicated but have a more direct physical interpretation
- $\mathrm{A}(\mathrm{s}, \mathrm{t}, \mathrm{u})$ has simple singularity structure. Its connection to particles arises through (complicated) partial waves

$$
A_{l}(s)=\frac{1}{2} \int_{-1}^{1} d z_{s} A(s, t(s, z), u(s, z))
$$

Well known examples of cusps

$Q_{0} \sim 100 \mathrm{MeV}<2 m_{\pi} \ll 2 m_{N}$

${ }^{3} S_{1}$ (deuteron) bound state : pole on the physical energy plane
${ }^{1} S_{1}$ virtual state : pole on "unphysical sheet" close the physical region

Classical picture

Coleman-Norton

Example : Pc Kinematics

m_{1}	m_{3}	
$m_{ \pm}=-m_{e}^{2}+p_{2}^{2}+p_{3}^{2}+\frac{\left(m_{e}^{2}+p_{1}^{2}-p_{3}^{2}\right)\left(m_{e}^{2}+p_{4}^{2}-p_{2}^{2}\right)}{2 m_{e}^{2}} \pm \frac{\lambda^{1 / 2}\left(m_{e}^{2}, p_{1}^{2}, p_{3}^{2}\right) \lambda^{1 / / 2}\left(m_{e}^{2}, p_{2}^{2}, p_{4}^{2}\right)}{2 m_{e}^{2}}$		
m_{2}	m_{4}	

- Singularities of $\mathrm{b}(\mathbf{s})$ are at $\mathbf{s}=\mathbf{s}_{ \pm} \quad b_{l}(s)=\frac{1}{2} \int_{-1}^{1} d z_{s} \frac{P_{l}\left(z_{s}\right)}{m_{\Lambda}^{2}-t(s, z)}$
- In QCD light quark resonances appear clearly up to $\sim 2 \mathrm{GeV}$ But one expected there to be an infinite number of them.
- At higher masses they are harder to find. To help discriminating between various hypotheses one should "consult" with expectations from quark model and duality arguments.
- Duality arguments are consistent with existence of multi quark hadrons.
- Veneziano model and generalizations could be used to implement these ideas in data analysis.
- Unlike non-relativistic theory, besides resonance poles one should work about "left-hand cuts' (cusps), however, so far there is no unambiguous evidence for them in the data.

Thank you for your attention!

[^0]: ${ }^{\text {(a) }}$ To estimate the s-behaviour we have taken $\alpha_{\mathrm{B}} \approx 0$.

