Topics to be discussed 1

Preliminaries : a bit more on QCD and a bit on complex calculus
Causality and Analyticity.

Scattering in non-relativistic quantum mechanics.

Kinematics of relativistic scattering and decays.

Relativistic partial wave analysis, unitarity, analyticity and resonances.
General parameterizations: N/D, K-matrix, connection with lattice QCD.
Physics of high energy collisions. (v v

Regge limit and the Veneziano amplitude. e %

New hadrons observed in particle decays?

H.M.Nussenzveig, Causality and Dispersion relations
V.Gribov, Strong Interactions of Hadrons at High Energies
V.Gribov, Theory of Complex Angular Momentum

M.Perl, High Energy Hadron Physics

IU Online Course, P665, Fall 2019
E-mail Adam Szczepaniak
if you are interested
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* Observables are smooth, analytical functions of
variables. Physics law, constraints are manifested
In singularities (poles, branch points)

e Cauchy theorem is a powerful tool to connect
observables at different values of variables

* Physics is on 1st sheet but interesting phenomena

happen on other sheets connected by analytical
continuation, eg. Breit-Wigner formula
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Identifying resonances
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* Theoretical signatures (complex plane
singularities: poles, cusps)

QCD Structure

* What is the interpretation
(constituent quarks, molecules, ...) ?

v \

Theoretical uncertainty

Tetraquarks
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Stranger Things (of the Nuclear World) ‘

What are the constituents of hadrons,
(quarks and gluons) ?

slow fast

small world (10-15m) blg!“"”_“ -

of fast (v~c) particles P ﬁ

small "
exerting ~1T forces !!! E\y, @;

h=c=1

length] = [time] = [energy]* Unitenergy = 1GeV
= [momentum]-? Unit length = 1GeV-1 = 0.197 fm
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Particles vs Fields 5

In relativistic quantum mechanics (QFT)
particles are emergent phenomena

(i.e. fields are not physically measurable but their “consequences” are, cf. potential vs electric field density)

A ——" T

“excitation of the collective motion
aether’ — field '—————~ — particle

H = Hn.o = harmonic oscillators
“bare” particles : eigenstates of Hn.o.
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Bare particles are eigenstates of free Hamiltonian ¢
“‘Bare (free)” particles of QCD: quarks and gluons

e.g. because of asymptotic freedom
measured in high energy collisions

other jets =

recoil electron
(or neutrino)

* Gluon ~ 8 copies of a photon

I @ @ » Photons do not cary electric charge : they only interact
w the matter (e.g.) electrons that do carry charge

» Gluons carry charge, i.e. interact with each other and
with quarks.
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Particles vs Fields: Hamiltonian vs Lagrangian-

Legendre transformation
H(pia%) < > L(Qz;Qz)

c _
5 HY[A] = EY[A] 0
© Ground state of Ho =
N (pure gauge) is =
C Gaussian Q)

(© —
=) ©)

-]
C (e 1)~ | Dge 99 |
v q'=q($,q=4(0)

Easy to interpret “Easy” to calculate
Hard to calculate < > Hard to interpret
(particles, states, path integral,
operators, etc. ) classical solution

(solitons), etc.
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QED vs QCD
QED

» Bare particles are eigenstates of free Hamiltonian. If interactions are weak
(e.g. QED) the “bare particle” ~ observed particle = (interacting particles)

Haep = Heho. + €V e ~0.303

o5

lelectron> = +

|bare electron>

Bound states, aka positronuim require all
orders, but can nevertheless be understood in
terms of “bare” particles (choosing the “right
gauge” = degrees of freedom is crucial )

QCD

Quarks in hadrons have the effective color
charge e > 3-4. Therefore there is in
principle no reason for them to retain their
identify in presence of strong interactions ...
...but it seems they do
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uark Model

MODEL FOR STRONG INTERACTION SYMMETRY AND ITS BEEAKING
1 "

AN sua

-
G, Zweig

CERLN-~Geneva

Both mesons and baryons are constructed from & set of
three fundamental particles called aces. The aces break up
into an isospin doublet and singlet. Each ace carries baryon
number 1/3 and is fractionally charged.  SUy (but not the
Bightfold Way) is adopted as a higher syometry for the strong
interactions. The breaking of this symzetry is assumed to be
universal, being due to mass differences amcng the aces.
Extensive space~time and group theoretic gstructure is then
predicted for both mesons and baryons, in sgreement with exise

ting experimental information. Quantitative speculations are
as yet been

A weak

presented concerning rescnances that have not
definitively classified into representations of sll}.
interaction theory based on right and left handed aces is used
to predict rates for |A S| = 1 dvaryon leptonic decays. An
experizental search for the aces is suggested,

" Version I -13 CERN preprint 8182/TH. 401, Jan. 17, 1964,

*) he U.S. Air Force Office
8 work was supported by the .
e of Scientific Research and the National Academy
of Sciences — National Research Council.
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exploring flavor

Volume 8, number 3 PHYSICS LETTERS 1 February 1964

A SCHEMATIC MODEL OF

.

BARYONS AND MESONS

M. GELL-~MANN
Calijornia Institute of Technology, Pasadena, Califormia

Received 4 January 1964

If we assume that the strong interactions of bary-
ons and mesons are correctly described in terms of
the broken "eightfold way" 1- , we are tempted to
look for some fundamental explanation of the situa-
tion. A highly promised approach is the purely dy-
namical "bootstrap" model for all the strongly in-
teracting particles within which one may try to de-
rive isotopic spin and strangeness conservation and
broken eightfold symmetry from self-consistency
alone 4), of course, with only strong interactions,
the orientation of the asymmetry in the unitary
space cannot be specified; one hopes that in some
way the selection of specific components of the F-
spin by electromagnetism and the weak interactions
determines the choice of isotopic spin and hyper-
charge directions.

Even if we consider the scattering amplitudes of
strongly interacting particles on the mass shell only
and treat the matrix elements of the weak, electro-
magnetic, and gravitational interactions by means
of dispersion theory, there are still meaningful and
important questions regarding the algebraic proper-
ties of these interactions that have so far been dis-
cussed only by abstracting the properties from a
formal field theory model based on fundamental
entities 3) from which the baryons and mesons are
built up.

If these entities were octets, we might expect the
underlying symmetry group to be SU(8) instead of
SU(3); it is therefore tempting to try to use unitary
triplets as fundamental objects. A unitary triplet t
consists of an isotopic singlet s of electric charge 2
(in units of ¢) and an isotopic doublet (u,d) with
charges z41 and z respectively. The anti-triplet
has, of course, the opposite signs of the charges.
Complete symmetry among the members of the
triplet gives the exact eightfold way, while a mass
difference, for example, between the isotopic dou-
blet and singlet gives the first-order violation.

For any value of z and of triplet spin, we can
construct baryon octets from a basic neutral baryon
singlet b by taking combinations (btf), (bttii),
ete. ™. From (btf), we get the representations 1
and 8, while from (bttit) we get 1, 8, 10, 10, and
27. In a similar way, meson singlets and octets can
be made out of (tt), (tttt), etc. The quantum num-
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ber ng - ng would be zero for all known baryons and
mesons. The most interesting example of such a
model is one in which the triplet has spin % and

z = -1, so that the four particles d-, s~, u® and b°
exhibit a parallel with the leptons.

A simpler and more elegant scheme can be
constructed if we allow non-integral values for the
charges. We can dispense entirely with the basic
baryon b if we assign to the triplet t the (ollowmg
properties: spin 3, 2z = -4, and baryon number 3.
We then refer to the members ul, d- I and s-7 of
the triplet as "quarks" 6) q and the members of the
anti-triplet as anti-quarks 4. Baryons can now be
constructed from quarks by using the combinations
(qaq), (qggqd), etc., while mesons are made out
of (qd), (qqdq), etc. It is assuming that the lowest
baryon configuration (gqq) gives just the represen-
tations 1, 8, and 10 that have been observed, while
the lowest meson configuration (qq) similarly gives
just 1 and 8.

A formal mathematical model based on field
theory can be built up for the quarks exactly as for
P, 0, A in the old Sakata model, for example 3)
with all strong interactions ascribed to a neutral
vector meson field interacting symmetrically with
the three particles. Within such a framework, the
electromagnetic current (in units of ¢) is just

i{luygu-idy d-$8y,s}
or #3, + Fg, /3 in the notation of ref. 3). For the
weak current, we can take over from the Sakata
model the form suggested by Gell-Mann and Lévy ‘)
namely i Py o(1+75)(n cos 9 + A sin D)‘ which gives
in the quark scheme the expression

iuyg(l +y5)(dcos é + s sin 6)

* Work suppcrted in part by the U.S. Atomic Energy
Commission.
** This is similar to the treatment i ref. 1), See also

ref. 5).

*** The parsllel with i T, Yall * vs) e and { N Ya(l + v‘,).\
is obvious. Likewise, in the model withd™, 8=, u®
and b0 disoussed above, we would take the weak eur-
rent to be (B° cos 8 + L® 51 €) Ya(l + ¥5) 8~
+ 1{u® cos € - b9 sin 8 va(l + vs) d™. The part with
Mg =np = 0 i just i TO yo(l +vg)(d~ cos 8 + 8~ 3in 6.




Discovery of quarks e.g. the J/y 10

A narrow resonance was discovered in the 1974 November
revolution of particle physics" in two reactions:

Proton + Be => e* e- + anything 80 r , e*e- annihilation to hadrons
at the BNL J.j Aubert et al, “Experimental 242 Events in the SPEAR storage ring at Stanford

=
observation J. E.Augustin et al.,“Discovery of a narrow

(T; ;4h)eavy particle |," Phys. Rev. Lett. 33, 1404 70 resonance in e*e-annihilation,” Phys. Rev. Lett. 33, 1406 (1974).

-+

| SPECTROMETER

™ At normal current
60k [1-10% current

.-

w
o

-

T/ = cc mass = 3096.87 MeV

[' =87 keV

EVENTS /725 MeV
D
o
1 1
A RN

103 longer lifetime !

typical hadronic width = O(100 MeV)
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Charmonium spectrum

_ Electron
Positron

- ©
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L B 4

J/p is a bound state of c ¢
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Hunting for Resonances 12

7 1909/1911 Rutherford/Geiger/Marsden discover the nucleus
o % é‘ 1919 Rutherford discovers the proton

1932 Chadwick discovers the neutron [
wedwg tptrtenan” Phose Space Normclizec
1940-now hundreds of resonances discovered - e o v
e x' < 6.0
"“i Phase Spocs for
"/‘Q N IBS0 Mev
\/ HV MAndersgn (1960) :
‘ p . E 104 Events £
; ot nj A. Pevsner ‘(1961)
o ent TP~ } .
It Cf Powell (1947) “g: AR'EFwin (1961) B . i
— 150 ; lifetime ~ 1024s | j '
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i 1004 I J
. . . . ,* L
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g r TLJ 400 £ 00 ) K w0 90 (o)
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3 | ‘ =2 . c‘ ion sy 231 s .
o 1 M
¢ 1| ¢: P.L.Connolly. Pevsner‘f(l 62) ' gt
§ paorticle date group
o ? I T l 7
é o ll'\: ?‘f . TeT I 7 m pdglive 1 Summary Tables ~ Reviews, Tables, Plots ’ Particle Listings ‘
W 1 T
] l J 1 | + ! ? 2 71 l T l? = from the 2009 Review of Particle Physics.
v v T o LA L AL R pase use this CITATION: C. Amsler et al. (Particle Data Group), Phys. Lett. B667, 1 (2008) and 2009 partial update for the 2010 edition.
100 - Cut-off date for this update was January 15, 2009.
‘ B G back to contents
80~ JARYONS
N (§=0,1=1/2)
p N =uud nN=udd
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Light mesons 13

Light (u,d,s) Mesons : __S __A_J_-_______ N
Flavor = 8 + | (SUx(3)) 177 ¢ SO
Spin S = 12x 1/2 =0+ | (SUR) =t 1 4
Orbital L=0,1,2.. (OB)  ..{ ¢ nup_ (—1)L+t
Radial n = 0,1,2... (vari o

adial n (various) O — (_1)L+5
S,L => J,Parity (+,-), Charge conjugation)
Po = —Fq Cl)=1Q) 8
JC 1 IT=1|1=0
=0t —=L=0,5=01=
T=20 — 0, 0, 1 J__l_ _ n;
p2=2"" 3 L=cven=2,S=1,1=1 J 0 W.J
JT b h ;
JTT ay JJ
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quark model 14

|B[8]) = |Flavor)s,, , X |Spin)s,,, + [Flavor)s,, X |Spin)s,,
fully symmetric wave function (antisymmetric does not work!) H. T Lioki FERMILAB-Conf-84/125-T
Color makes it into fully antisymmetric to respect Pauli principle PEN November, 1984 »
1 Baryon magnetic moments
So=—
O\ Baryon 1983 From
A Moment Data Naive
/ Ref[26] Model[25)
 fe
& 377 2 up) 2 79310 .000 2.79
. .
Sq = 9 = e | u(A) -0.6131+0.005 -0 .58
u“T 9 w(zh  2.38%0.02 2.68
‘J( X‘—) -1 0111'0 004[27] -1 005
w(3°)  -1.25%+0.014 -1 .40 _
p(z") -0 .60+0 .04 -0 .47
1995
pwo- = (~2.019 = 0.058)uy  —1.84uy

better then 10% accuracy !!
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quark model

——>  orbital excitations a,,f, f, K, 2+

J=L+S (25+1) | - - a,fi, fi K 1+
J p,ﬂ),q),K 1 = A :11 ;

P=(-1) L+t l L=0 anm’.K 0-+ Go,fo,f’o,Ko o+

C=(-1)L+s 15=0"-* byhy R Ky 1+-

radial excitations

6=C(-1)T 35 =1~

PC
|‘]Pcan> — \IJJ ’n(rqcﬁmqm@qucj)(scqc—

q

S+L=J Y(ry) — Y(|rel)

2 2
H — pq T pq
qu 2m(j

\/

My ~ Mg ~ 300 GeV my, ~ mg ~ few GeV

+ Vc(”l’qq) +Veg + Vg + Vp + Vg

constituent quarks bare quarks
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“Evidence” for Constituent Quarks:Light Quark Hadrons

negative parity positive parity
e
: IS © . : -+
251 |. TR L = 4 -:Sﬁ i o .
:'\,_; 3 s -L " :SL-VI 1
_ * -§ N . R T — S m—
. '\—fl.-u:
i . P tl"c% g++ g4++ 3+-
= — ]
20} S = I ;i;;
o '}\I ] o — 3—— *
SO ES— .
L * S 2 2 ;
® — =
O 15t . DL}~
~ = =
E _;; - 2++
+_
- 4 . 1 1++
10+ L)
=~
'77,- . p - 82
- e _
S [\ [S=8,+8S,
T > @
051 A }/U [ J=L+S
0-+ L+1
| P= (1)
I L
+S
C=(1)

16

Spectrum of mesons containing u,d,s quarks from numerical QCD
simulations (lattice) resembles spectrum of quark models.

exotics

o
—~

~
~—
~

my = 396 MeV

isoscalar mmem
f S

isovector
YM glueball

J.Dudek et al.
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QCD as a many body theory z

QCD
L = FﬁyFﬁy IE(WMD/L _I_ m)lb
F, = 0uA% — 9,A% + g f1bAb AC
l)#,::<9M-+-igf427"1
[Ta’ Tb]z'j — ifabCTZ%
Variables:

2 (1) =y (X t)
/ Parameters: g,m

8x4 x3N 3X4X3N
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Plausible scenario 18
e SN, Cron-fnear >
finite energy, localized solutions:
solitons (monopoles, vortices , ...)

The QCD vacuum is not
empty. Rather it contains
guantum fluctuations in the
gluon field at all scales.
(Image: University of
Adelaide)

-gluon.mean

Monopoles have been long
R speculated as candidate
“physical gluons” g mean filg gluon filed configurations

" responsible for confinement

NIV Iaal Jefferson Lab

S




Monopole confining scenario 19

in “magnetic condensate”
in “empty vacuum”

Type-Il supper conductor
Dual Type-Il supper
QED AAA \ A A ANAAAAA QcD

condensate of condensate of magneti

electric charges

\ SIIE SiE Sie S S
electric current @/ \ magnetic current

magnetic lines screens
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Emergence of constituent quarks 20
H=Hy+V H= demo ()| f ;-2“’

VID)-V(rol]
-
&
e
N
o Yy
<Y
T
w™

Mean field approximation  Hartree + Fock (BCS theory) :jf | " |
_ 2 2 .
V= dxdy | W(X) | V(X — y) | W(Y) | Instantaneous potential
between (color) charges, e.g.

Coulomb + Linear

lw(y)|* = (|w(y)|*) = condensate

my — my+ V X condensate o
Eg Current quark levels A Meonst ~ 0.1-0.3 GeV
—Q
o—

L —

.
-

{1
Interaction with the condensate —O—

increases energy of a quark added to _ O—
the vacuum —0—

gFenm-Du‘ac sea ?BCS vacuum

il

ground state contains a
condensate of bare quarks
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Confi nement in QCD E% e.g. absence of isolated quarks applies 2!

to both screening and confinement

MO}

E-dngNe_R/AD
oV

e apsence of isolated quarks

In absence of an order parameter we have to
content with properties of confinement:

condensate (i.e. electrons in metal)

1o(VI[r] = V[2r,])

e|inearly rising potential _
eRegge trajectories T
eCasimir and N-ality scaling s

I=n

os’[ring behavior n 78 Staic quark-ETET POTETTAT SO gRTgE Ty
a2 e

V{(R)

N-ality
dependence

Casimir scaling (?)

10 1
-20 iH ‘ . |

0 02 04 068 038 1 12 14
R

= o
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QCD vacuum and the role of gluons 22

Gluons are responsible for confinement (aka effective
potential between color charges) and are confined (aka
contribute to the color charge)

P

ace / Coulomb gauge \

VACL(Q?) = 0 >
MA¢A¢> .
> time >

short range long range
interaction interaction
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Coulomb gauge 23

Coulomb gauge Hamiltonian B} = V,;A? =V k,A;L +aqf “bcA?Az

'
H =3 [dx|7~tA27M 4+ BB

T

. —1d.,..d
Jacobian (e.g.r 1%rﬁ)

J(A) = DetVD(A)
+ [ dxoypf [—i& (6 - igA“T“) + Bm] "

2 ixdy T () Kal Al ¥) T )

— IO v - 1 a — frabc AbAc a
K = ~D(A)( \% )%(A) p@ = fabe Abrje 4 optay,

H (35, A) W[A] = EW[4], [DAT|V[A]]? = ()

G=gY2a7-12 ¥ =7gY2v  [DAV[A]? = ()
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Example of calculation Khriplovich, 1969 24

H, is a h.o. H=Hy+ gV

E=Ey+gEi+¢°Ey+ -
\m~mmi/mwmwm@—wmw>

calculate E for QQ in the perturbative QCD ground state

<H> enhanced in the real (quasi) particles propagating
IR from modes near horizon expected to be suppresses

’* ¥ *
| I
|

w- g o

|

| |

* % %

I |2 comes from

o) Q 1 the Coulomb
=& s 2y (L)) e

"
\ Debye screening

QCD
w INDIANA UNIVERSITY



Confining Potential and the gluon condensate =

H = Hypn +V  H=
V = /dxdyp(X)K[A,Xa ylo(y)

g o
vz o |x-y|l

V(R,0)=log[G(R,1)], B=2.5, 24*

K —

X
|
|
|

%

Coulomb string tension

V+ dedyp(xV(X - y)p(y)

H, +V

Y

Y

* Coulomb “Potential” between external (i.e.
quark charges) depends on the distribution
of gluons.

* |n presence of a gluon condensate it
produces a Confining force been external

color charge A
).
>

X X X
! ! N L
<Q| RS :fzr\ ' Q> — . long range,
I I . " . . -
* X % Q contains condensate of Confining interaction

monopoles, vortices, ...

IIJ NIV Iaal Jefferson Lab
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.l)

Energy ( 10° cm

How to “measure the potential” 26

24

20H I ¥

12

@.n Qluons behave as

physical particles
with JPC = 1+

Potential energy curves
for the excited valence A J
szstates of Caz

g PxC=+1

BEL T - (4p)°P+'s”] J PC— *I -
B . Energy of the
gluon field
I ) j J PC: 1 +'
PxC = -1
"SI ST - — R — O
R (a,) R

Technically this is not the

glue‘lump same as the Coulomb

potential. Quarks have to
react on the condensate
to creat a flux tube or
gluon chain.
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Quark Model with Gluons : Hybrid States 27

FPog = (_1)L+1
Cq(i — (_1)L+S
PC _ 1+-—
JPC =1
JPC glue

X Og;@ =1
Xlgoo=1=[0"T 177,277

JPC = 1-+is not a qq state

exotic quantum numbers

P

NIV Iaal Jefferson Lab




Meson Spectrum on the Lattice 28

large overlap with

new multiplets from lattice gluonic operators

includes |-+ exotic

l""'""""""""""""':
: quark model states N :
: 3000 iy D 17|P 3= :
! 4 B 1 ;
' : - O 0 T '
1 JLé Ep— 2
) N pteT ST Be®, |
1 2500 13S' 7 (1,2,3)--2+ 1 () 1+ :
' [ ($,4,5) ::‘: =) [ HpP 1
: i 1F L] 0,1,1,1 :
ziop e o T :
¥ (0,1,2)*+ 1% Iy (0,1,2)°%1
Q1| ! 4 NEW states :
£ | 1D 'JI ---------------------------------- -
2C . — (1,2,3-,2~ ;
E =35 :
K3 1500._ 0=+, - ] [ o+ |-+ 2-t |--j
' — 1P :
: (0,1,2)*%,1* :
: : lowest-mass
Vol — P : hybrid multiplet
: —1s T :
: . 0~+,1 : [isovectormesonspectrum with my ~ 700 MeV ]




Liaht auark exotic candidate

search for

M =1370+16"2) MeV /¢’

Tp—=Nxp I
[ =385+40. MeV /c’

z
=

7000=—

;

np—mnrn I

exists and can r

np—=>p'mPp

events / 40 Me V/3
LR A I

2
: :
llf“l

No consistent B-W interpr " -

30 K)ﬂ_

possible but a weak NTT int 2000

& I'llgh wave {a)
& low wa o 4

radians (radians)

& high wave
A low wave

AB(2" T =171

1.2 1.4 LR} 1.8 za 1.2

T p — 75 (1600)p MI3%] GeV/c?

T T T
1.4 1.6 I.a

M[3r] Gevic

7T2_ i p07T_ FIG. 25: (a) The 17 t1t P-wave pr partial wave
0 charged mode I:'JT_'II'_'JT+:I for the high-wave set PWA a
P 7 HowHhave set PWA and (b) the phase difference Ad b
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Beyond the quark model 30

QCD: There are many other possible color singlets.

s U d u d
Y'dS (s
dibaryon pentaquark glueball

“} y u j‘ﬂ ) CW ;3

diquark + di-antiquark dimeson molecule q q g hybrid
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Quick Summary 3

« QCD vacuum has gluon condensate in the form color monopolies, vortices,...
« The condensate leads to an effective, confining potential between color charges
- Light quarks propagating through this medium acquire effective mass

- Static color charges (i.e. “very heavy” quarks) inserted into the vacuum polarize
the condensate and change the background gluon distribution

- For large separation between the charges this leads to formation of a chromo
electric flux tube (aka dual superconductor)

« For small separation between charges, the effect of vacuum polarization can be
described as quasi-particles.

« Once the have quarks are allowed to move the polarized gluon filed (the quasi-

particle of the flux tube) can result in a new type of hadrons -> hybrid mesons or
baryons.
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Intermezzo : Complex Calculus 2

z=a+ b — f(z) = Ref(z) +iImf(z)

Elementary functions: you can also think of them as maps of one
complex plane (z) to another (f(z)): z— f(z)

A[mz Imf(2) ,\

/N

z — f(2)

.

Ref(z)

Rez

To define a function we can use the algebraic relations e.g

f(z)=+z2 is such that z= f(z) x f(2)
w INDIANA UNIVERSITY




Complex functions 3

* Continuity imposes very strong conditions of functions
(much stronger than in the case of real variables)

* “Smooth” (analytic) functions are “boring” all “action” is in
the singularities (poles, cuts)

 Singularities determine functions “far away” from location of
the singularity (e.g. local charge determines electric field )

* Physical observables are functions of real parameters,
however physics law can be generalized to complex
domains and become “smooth”. Any “constraint” results in
singularities.
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Complex functions 2

fmz Imf(z)

/N

z = f(2)

>

Ref(z)

Rez

Often the mapping is not “one-to-one” and one needs to be
careful in defining domains which give a unique value for the
function, e.g. is

V=25 =4+bl or — bl ?
w INDIANA UNIVERSITY




Example +z 3

z = |z]e"? Vz2 = |z\ei%
2 Va/z = ’Z|6i% \z!ei% = |z|e?
2
> ¢ using ¢ =|—-w,m)

or ¢ = [07 27T)

gives different results for /=

IIJ NIV Iaal Jefferson Lab




\z a6

V2= \z|ei%
e using ¢ = |-, ) V14 ie~+1
gives square root that is - ¢~ €
continuous near the B
positive real axis ¢~ —¢
vV1—1e~+1
e using ¢ = |0,2m)
vV1+1e~+1
b~ € gives square root that is

discontinuous near the
T o positive real axis

—_—

»

- In both case it has the same value when
V 1l —2e ~ —1 approaching the positive real axis rom above

IIJ NIV Iaal Jefferson Lab




More complicated functions 37

A, 2z vVz22 -1 1+

IIJ NIV Iaal Jefferson Lab




or 38
and use principal branches

- P1+P2
V22 —1=/rirse’ 2

ri,re = [z =1 [z + 1

NIV Iaal Jefferson Lab



Calculus: differentiation 39

f'(20) exists

. Z) — 20
f(z) is differentiable (holomorphic)if 1im f( ) f( )
Z— 20 Z — 20

write z = x + iy and f(z) as f(z) = u(x,y) + i v(x,y). Since the procedure of
taking the limit in definition of f'(zo) is independent of the path taken in z—zo,
you can take two independent paths e.g. path 1: x = xo + €, y = yo and path 2:
X = Xo, Y =y + € Cauchy relations:

A Z ZO
ou ov Ou Ov This implies Au=Av =0
— =, — = —— where A is 2-dim Laplacian
dr Oy Oy Ox u,v : harmonic functions
z z
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Calculus: integration 40

Line integrals: given a curve C in the complex plane parametrized by a real
number 0t <1, t —z(t) = x(t) + iy(t) the integral of f over C is defined by

1 N
dz
[ = [ peenGa= | dim 3 e,
n=1
Azn =Zn-Zn1  pote: this is an ordered path

C Zn-1 We can estimate the integral: if [f(z)|<M > 0 along C then

dn Zn
| / f(2)dz| < Ms wheres it the length
C of the path

z(0) = zo

Cauchy-Goursat theorem: If f(z) is holomorphic in some region G and C is a closed
contour (consisting of continuous or discontinuous cycles, double cycles, etc.) then

]{f(z)dz =0 (converse is also true)

IIJ NIV Iaal Jefferson Lab




Cauchy formula

41

The Cauchy integral formula: if f(z) holomorphic in G, zg € G,

and C a closed curve (cycle), which goes around zo once in
positive (counterclockwise) direction, then

f(z0) = 1 f(z)dz

2T Jo 2 — 20

IIJ NIV Iaal Jefferson Lab



Proof 42
Iimg—>0 Cg = C

lime—o L1=-L>

Z0 C

C=Ce+Li+Lo+R

o= g =il L) /]‘!5%/ Je

f(Z)dZ:f(ZO)/R dz _|_/ f(z) — dz

R Z — 20

e—0: —27m1 0(6) — 0
o Conite o [ =1
C
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Exercise

Integrals:

/dz /z”dz
Y v

% / dz
~ < ! <

dz

2
V2

IIJ NIV Iaal Jefferson Lab

Y = unit circle

Y’ = unit square

43



Contour deformations !!!!! 44

1
1
dx
1 \/1—$2

/OO dx oom
L xvax? —1 2

=5

IIJ NIV Iaal Jefferson Lab




Analytical continuation 4

For real functions it does not work
f(x) ,

but for complex functions you can go
continuously around the z=0 singularity
and analytically continue from one region
to another

IIJ NIV Iaal Jefferson Lab




Unique ! 4
Analytical continuation

Let f1(z) be holomorphic in G4 and f2(z) in G2, G4 and G2
intersect on an arch A (or domain D), and f1 = f2 on A (or D)
then f1 and f2 are analytical continuation of each other and

B fl(Z),Z c GGy
fz) = { £2(2). 2 € Go

Is holomorphic in the union of G1 and G2

IIJ NIV Iaal Jefferson Lab



Examples 47

1+ 2z+ 2%+ --- is holomorphic in |z|<1
/ e~ 1=2)tdt  is holomorphic in Re z < 1
0

—(1+1/2z+1/2*+---) is holomorphic in |z|>1

all these functions represent f(z) = 1/(1-z) in different
domains, which is holomorphic everywhere except at the
point z=1

IIJ NIV Iaal Jefferson Lab



A(s,t) : how to continue from between s andt «

t-chann

f(s,t) = fr(t)s”

]

how analytical continuation
happens in practice for
scattering amplitudes

AN

u-channel

[p NIV Iaal Jefferson Lab

S

>

s-channel

Pt

u
f(s,t) = Z fn(s)t"



Continuation of integrals 9

what are the possibilities for g(s) to be singular? g(s) = [ de(Z, S)dZ
C

g(s) can be singular at so € G only if

1. f(z,s0) in z-plane has a singularity coinciding with the end
points of the arc C (end-point singularity)

2. two singularities of f, z1(s) and zx(s), approach the arc C from
opposite sides and pinch the arc precisely at s=so. (pinch
singularity)

3. a singularity z(s) tents to infinity as s—so deforming the

contour with itself to infinity; one has to change variables to
bring the point « to the finite plane to see what happens.

IIJ NIV Iaal Jefferson Lab



Example 50

dx

X—2Z

= log(l —z) —log(—1 —2)

1
f(z)=J
-1

where are the singularities ?

N
-

e

- N

! T 05 1
Re(z) ~ 2 = Im(z)

Before analytical continuation the result is on the 1st sheet !

[p NIV Iaal Jefferson Lab




Analytical continuation takes us to “other” sheets

133_25

L dx
f(z)=/ C =[-1,1] ‘

e

when z approaches x deforming ] DESESsE =
C allows to define a function f(z) 1 1T
which changes continuously ; /0722

Q: So on which sheet is physics
A: All. The 1st sheet is protected by analyticity. Other sheets
have singularities which have physical interpretation

[p NIV Iaal Jefferson Lab




Breit-Wigner Formula (1st sheet) 52

1 ['(s) = /s — s, x rest(s) A I

A(s) =
(5) m2 — s — iml(s) Im(As))

1
A(s) = 05

2—5—08i/s—1

l Ve(AI(S))

1

2—5+08y1—-s

* Physics : s real i0 above the real axis

« Unitarity : cuts the real axis above thresholds.

« Analytical continuation to 2nd sheet displays
resonances, efc.

Al(s) =

This formula is valid entirely on
the 1st sheet There is no peak !!!
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Breit-Wigner Formula 53

1
A(s) =

2—s5—0.80\s—1

|As) |

1.5

0.57

0 , |
| \‘3

Re(A(s))

This formula is valid on the 1st sheet for
Im(s) > 0 and 2nd sheet for Im(s)<0

[p NIV Iaal Jefferson Lab




54

* Observables are smooth, analytical functions of
variables. Physics law, constraints are manifested
In singularities (poles, branch points)

e Cauchy theorem is a powerful tool to connect
observables at different values of variables

* Physics is on 1st sheet but interesting phenomena

happen on other sheets connected by analytical
continuation, eg. Breit-Wigner formula
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Probing QCD resonances (using physical states)

«  When (color neutral) mesons and baryons a smashed, their quarks
overlap, “stick together” and form resonances (quasi QCD eigenstates).
They are short lived and decay to lowest energy, asymptotic states (pions,
K’s, proton,...)

* Resonances are fundamental to our understanding of QCD dynamics
because they are formed by all-order (aka beyond perturbation theory)
interactions. Resonances challenge QFT practitioners to develop all
orders calculations (still ways to go).

+  (QCD) Resonance lead to extremely rich phenomenology, e.g. XYZ
states, gluonic excitations, etc.

» In practice, one requires tools that relate asymptotic states before collision
to asymptotic states after collision that include flexible parametrization of
the microscopic dynamics. This is often referred to as amplitude analysis.
The rest of these lectures will focus on this topic.
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Bound states/Resonances/Asymptotic states

- 9 - 1
O = XOED — ———
p Qo © 137
ih(r) = E(r)
| 2m€ T _ Electron
e-
( ) e—ikr g e+ikr —am r
ry = — —_ e
v - - (1) w(r)=e (2)
S=1+0(a) .
L ) Bound states: compact wave function
Born approximation : “weak contains interaction to all orders.
perturbation (lowest order) to free

motion

Resonances: particles interact to all orders (like bound states)
but eventually decay (connect with asymptotically free states).
Their effect appears in the S-matrix : Compare (1) and (2)! « = iam,)
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Causality implies Analyticity 57

Actual relation depends on the type of problem (mechanics, Q.M., QFT, ...)

You will see similarities, though, i.e. absence of singularities on the physical
sheet.

Conservation law i.e. probability deals with time dependent flow “messes
with analyticity” and introduces singularities outside physical sheet.
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Amplitude analyticity: it is much about complex functions ss

\-"(rl Aphysical = A(s + i€) > A(s = complex)

analytical continuation

|sheet - | '.__S cm
Resonances jy|{---\ —— ¥ see». 2

Asymptotic states

I

Bound states FE:

» Scattering amplitude describes evolution between asymptotic states. The
information related to formation of resonances is “hidden” in unphysical
domains (sheets) of the kinematical variables.

« The “bump” in the right figure is an indication of a “hidden” phenomenon.

To uncover it one needs to analytically continue outside the physical
sheet.
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Potential Well vs Barrier : not very pole is a resonance 59

/2 n/2 512
v S S Rep

®° Increasing

—he>d

strength

V(r)4 o L. . P S
Inferaction R P~ 4 /r
0 | strength increasing | - | 2 .
50 bound interaction | - f

state at Er

oz neo 2eoWao

V(r) 4
,' | ¢ r
a

» Resonances have minimum width T~ l e

before they become bound states T a .

« Resonances move to + « with

* Average velocity inside the Wellis ~_k VE-V wishing width

always finite a a « Average velocity of the wave

infinitesimal -> long time spend

Every pole is a resonance (positive ener
Y P (P 9 on top of the barrier

finite lifetime) but not all resonances (poles)
are connected to bound states
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Infinite, thin shell 60

P’ A
H=—+V V=-—0r—a dim\ = —1
21“‘ 2,&&
4 €
“Relation” to QCD V() PR
/e
Inside the shell (O<r<a) particles are
confined (like quarks in hadrons)
The shell is thin allowing for free
asymptotic states (hadron decays) v N
a
.
Method 1: In coordinate space (as before)

Method 2: Lippmann-Schwinger

T=V+VGyV +--

IIJ NIV Iaal Jefferson Lab




Shell 61

« For any strength of the potential there is an infinite number of resonances

* There is one pole in each strip n—Drx<RPB) <nr (n=12,-)
b, = kya
A
A
Re k) Re I;
o o 0 f f
’ ° 0 0
0 0] o P
v
v
 as potential strength decreases :  as potential strength increases :
2
1 nr
1 , _ ;=
ﬁn_)(n_z)_loo ﬂn—>l’lﬂ'<1 1+A> l(A)

A=Ala

IIJ NIV Iaal Jefferson Lab




S-matrix properties (in relativistic theory) o2

There are no potentials

Particles and antiparticles are related by crossing

There are NO exact, non perturbative methods in QFT (major
challenge for mathematicians)

Physics lows are manifested as singularities of analytical
functions (observables)

First order of business: understand properties of reactions
enforced by these general principles.
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S-matrix properties (in relativistic theory) 63

» Related to transition probability

1
Py = [(£1S0)]* = GISTIA){fIS) ¥y
» Conservation of Probability = Unitarity ! N ‘
ZPJ% =1 2 7

f *
_— 2ImTp = Y 278(E; — En)T}, T

« Lorentz symmetry: T is a product of Lorentz scalars and covariant factors
representing wave functions of external states, e.g for (ki) + N(pi, M) — 7(k2) + N(p2, \2)

u(p1, A1) [A(s, 1) + (k1 + ko) " B(s, t)]u(p2, A2)

« Crossing symmetry: the same scalar functions describe all process related by
permutation of legs between initial and final states (only the wave function change)

ﬂ-(kl) + 7T(—l€2) — N<_plaul> + N<p27:u2)
Qj(pl) Ml)[A(Sa t) + (kl + kQ)M’yMB(SJ t)]u(p27 :LLQ)

« Analyticity: The scalar functions are analytical functions of invariants
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Lorentz symmetry 64

N-to-M scattering depends on 4(N+M)-(N+M)-10 = 3(N+M)-10 invariants

e.g for 2-to-2: 2 invariants related to the c.m. energy and scattering angle

p1 py 5= (p1 +p2)° = (Erom + Ezem)?
a ¢ t = (p1 —p3)’
t=m5+ms — 21 cmEo.cm + 2P1.cml||[P2.0m | 28
w=(p1—ps)® stttu=) m;
b d u=mi+mi—2E1 cnFicm — 2|P1.cm||Pcm|2s
P2 P4

2n0(Ey — E;)iT = (c,d|(S — 1)]|a, b)
Dimensions  (p', 8|p, @) = 2E(p)d(Ps — Pi)da,p
T = (277)35(13]” — pi)A(s, t, u) r.h.s has dim = -4
A(s,t,u) is a scalar function of mass dimension =0
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Question 65

How many independent variables describe
 Decay proces A—a+b +c

* Three particle productionA+B —a+b +cC
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Helicity amplitudes 66

We work in the c.m. frame & ’p7 )\> p— )\’p, )\>

iz

(P3, A3; P4, Aa| A|p1, A1;p2, A2) = Axy aoas,aa (851, u)
Helicity states vs canonical spin states: Sz |p7 m>z — 7n|p7 m>z

p,m), = A(p'< 0)[0,m),
p,A) = R(P)A(|p]z « 0)[0,m),

S
Exercise show this: |p, )\>z = Z |p, m>zD§1,)\(ﬁ)
m=—_S

« Even though this looks non relativistic it is relativistic. Notion of LS amplitudes,
LS vs. helicity relations are relativistic

N = naturally
Parity A)\1,>\2,>\3,>\4 (87 t? U) — 77A—>\1,—)\2,—>\3,—>\4 (87 t? U)
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Question 67

How many independent scalar functions describe
JIy — 11+ - TP

Yp->10p
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Crossing symmetry pi=—pi = (-pi,—E;) e
a(p1) + c(p3) = b(p2) + d(pa)

JogIpOtg o

a(p1) + b(pz) = c(p3) + d(pa) a(p1) + d(ps) — c(p3) + b(p2)

(
Een 5= (p1+p2)? t=(p1+pg)? u=(pr+p1)°
Cos(®) { = (p1 —pg)2 § = (pl —p§)2 — (p1 —p3)2
Cos(®) u = (p1 —p4)2 u = (p1 —p4)2

* The ie is important. Function values at, e.g. s + i€ vs s - i€ are different !
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Crossing Symmetry : Decays M > ma +m3 +my &

N~ N5
/TN N\

a(p1) + b(p2) = c(p3) + d(p4) a(p1) = b(pz) + c(p3) + d(p4)

N |

A(s, t,u) = A(M? + i€, s + i€, t + i€, u + i€)

* In decay kinematics, the decaying mass becomes a dynamical variable, (ie
important)

« Crossing from one kinematical region (e.g. s-channel) to another (e.g. t-channel)

requires taking the corresponding variables off the real axis and to the complex
plane : analytical continuation.
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Kinematical vs Dynamical Singularities 70
M

— J J
For particles with spin Axi(s,t) = 16m Z (27 + 1)f>‘73 (s)d)\,)\,(é’)

J=—M /
)\3/ | M = ma;\c(l)\k A \))\
Al —p S 2 A=Az — g = A1 — A2
J 1 ' J
" R0 = g [ a5, 0] (6)

Wigner d-functions lead to kinematical singularities

Threshold (barrier factors) originate from kinematical factors in relation
between t and cos(0) (through dependence of A) on t)

Unequal masses give lead to “daughter poles”

Dynamical singularities : from dynamical (unitary cuts) in A(s,t).
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Analyticity 7

Feynman diagrams
A(pi,- - I1,d*k.
) [ R P (R T R

m? —p° = [m”* +p°] — (p°)*

polynomial in k;,

m2 _p2 — 0 %pO — :|:(7712 4+ p2)1/2

* Integrand becomes singular when
intermediate states go on shell.

» Thresholds for producing physical
intermediate are the only reason why
amplitudes are singular.

b \Pz-
* Production of intermediate states is related to P2 P4
unitarity. Thus we expect unitarity to 1
determine singularities of the amplitudes.

1
m?2 + p? F ie — pY

= +7wd(po — vV m? + p?)

On the role of ig Im [
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Relativistic S-matrix fundamentals 72

Causality: Determines domain of analyticity of reaction
amplitudes as function of kinematical variables.

Unitarity: Determines singularities.

Crossing: Dynamical relation, aka reaction amplitudes in
the exchange channel (forces) are analogous to amplitude
in the direct channel (resonance)

These principles constrain the amplitude on the physical sheet. But on the
unphysical sheet, there poles and other singularities, i.e. triangle singularity
brains points, that arise from the underlying dynamics. Thus in reality it is the
unphysical sheet which is of interest.

Amplitude analysis = make hypothesis about these singularities and use

analytical continuation to obtain the amplitude on the physical sheet where you
fit to data.
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S-matrix properties (in relativistic theory) 73

» Related to transition probability

1
Py = [(£1S0)]* = GISTIA){fIS) ¥y
» Conservation of Probability = Unitarity ! N ‘

2 Fri= 2

f k
o 2ImTp = Y 278(E; — En)T}, T
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How unitarity constrains singularities: simple example 74

2ImTye = Y 278(E; — En)T}, T

/TN
Consider elastic scattering of spineless particles

()
ImA(s,t) = ps) / d A(s,cosbt1)A" (s, cosbs)

167 ) 4r
p(s) = 2kem(s)/V/'s

At fixed s, this is a complicated, integral relation w.r.t momentum transfer, t
It is simplified (diagonalized) by expanding A(s,t) in partial waves
©.@)

As,t) = 167 Y (20 + 1) fi(s)Pr(cos 6) Imfi(s) = p(s)|fi(s)*

[=0
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How unitarity constrains singularities 75

Properties of the partial wave, fi(s) (for fixed | as function of s):

1 1
- fi(s) is real for s below threshold hils) = oo /_1 dcos 0 Py(cos 0) A(s, (s, cos 0))

* Im ﬂ(s) 'S f'mj[e abqve thresholld. for simplicity ignore singularities in t
* fi(s) is analytical (since A(s.,t) is)

— Reflection theorem (Calculus 101): fi(s*) = fi(s™)

Threshold - '

Lets look for a function, fi(s) that, for s-i¢ is
equal to fi(s+i€). Theorem of analytical
continuation implies there is only one such

function
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Second sheet 76

Singularity = Resonance at complex s when

S+ 1€) = f(s 3 7;6)
f(s +ie) 1 —2ip(s) f(s — ie) f(s):%
21p(s
Define for Ims <0 fr7(s) o p

~ 1 2ip(s) f(s)

fri(s —ie) = f(s+ ie) This is analytical continuation of f(s)
below the real axis

| sheet ""-.A__V Il sheet
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Breit-Wigner i

whenIms <0

gz\/ Sgr— S

S) =
1) m2—s+g2 /s, —s m?—s+ig* /s —s,

p(s) =4/s =5,

2 —
PR (O _ S Vi’
T 2ipof(s) M eSS 2igh s sy

whenIms <0

gz\/ Sgp— S

m2—s—ig2 /[s—s,
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Phenomenology of hadron interaction 78

Evidence for resonance scattering : connection to QCD bound states.

Kinematical range for resonance scattering.

Features of high energy scattering : physics of cross channels

Space-time interpretation of high and low energy scattering

Dual models

dt
O-a—l—b—>a—|—b0</8_2|A(Sat)|2

ImA(s,0) .
Og+b—sX X from unitarity
S
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Phenomenology of hadron interaction 79
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/N
N—"
—h
-
3
C
>
=
Q
-
=
<
ection (mb)
g

C

g
!
E

+~ Resonance R ;¥ﬂ9¥1l=L~JL —E ST TP

i : scatterin R "

| | ':i-‘l' il -.H. r—‘—i""tf»"_‘

i

=

A
Cross section (mgb)
=

—-_—
- '_.'
34
i
42
-
—
b
Lo
A

VRG t ».
" E 4
M A VIS P
/ \ —_— . ll.lc’; b by
!
T

e GOVE

"";‘*14(1232)3/24{

AR
ol &

10 “pim iy e

-------------------------------------

................................................................... Z -
........ ..... a5 {}Q ..... J.\{(.1.680.)55/.2T..-;L-.-. m,? — S 1
T N T fo3

from: M.Ostrick ; ; T : e
10 oo S I S S " -

v ' v v
) vl fndefudubriudedbel nlabrfalldububy iulabodabefunbiubed fubebsdbrtutetriied delfel

02 04 0.6

IIJ NIV Iaal Jefferson Lab



Resonance Scattering : look at angular distribution =

do |A(s, )P
52 Al = YU D) P )

/\ 1-/\ /\ /\ ’
’ (440-18) MoV |l (470-15) MoV | L)M? L,M} / (550-15) MaV i 50~15) MoV |

Angular distribution: a few “wiggles”

8
T
K ]
g

(650=15) MeV (58)=15) MeV (710=15) MaV (740=15) MaV TT0=15) MaV (B00=15] MV i (B30=15| MeV
: |
f 1/ |
/ t | 1
1 !
| 4 | \ ‘
| {
A (869=15) MeV | L pa-1smev | | {320-15) MeV | 950~15) MeV i (850-15) MoV i (10101 0-1
{1070«15) MeV (1100=15) MaV (1130=15) NeV (1160=15) MeV (1190=15/ MeV {1220=15 MeV 1250=15) MeV
' ' Mt bk from M.Ostrick
_ tizeo-pmmev | | 310=15) MeV | (1340=13) MeV (1370=13) MgV | (1400=15MeV | (1430=15) MeV |

more pronounced forward/backward peaks as energy increases
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Resonance scattering 81

» Due to confinement, we expect an infinite number of resonances (poles at
positive energy — recall the potential shell example) of arbitrary large mass and
spin.

» String/flux tube breaking leads to screening of color charge and these poles
decay. As mass increases they coach to multi-particle final states. The poles are
still there, but dive deeper into to complex plane and are more difficult to
identify. However, when making a model it makes more sense to parametrize
amplitude with BW resonances as compared to some arbitrary background
functions.

p=I1Ir
» Forlmax ~ 5 and interaction range ro ~0.5fm this gives piab <~ 10/fm ~ 2GeV,
[or W ~ (2 Piab mp )12 ~2GeV ]

« For resonance scattering

Pip(25(1))
S — SR

Als,t) =Y @+ 1) fi(s)Pi(zs(t) —  Als 1) ~

!
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Scattering at High energies

DSIGDT (mub GeV~-2)

10°

PI- P -> OMEGA N

10% p

10°

10° |

...
e

107 F

10\

forward/baekward”
peking

2

0.0

1

do

1
5(5) =

g2

Smooth behavior
constant or powe
low fall off

10 LR

T LI B I ] i T
3 ol A Jip
¥(28)
4 ,ﬂ‘,'p P

10

Oa+b—X — ;ImAab—an(Sa 0)

|[A(s, )]

82

snded like”

10 -
Zw” lh‘k ':' ]
v, =, A
10 ", 3
by, 3
i I13 H H ” v, 3
0’ point like e E
10 Ll 1 Lol 1 Lol 9

1 10 102
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Scattering at high energies 83

» s-dependence:
*many intermediate particles can be produced, unitarity becomes
complicated and less useful.

* t-dependence:
*high partial waves become important, several Legendre functions are
needed.

* There is universality in both s and t-dependencies: smooth (constant or falling
s-dependence), and forward/(backward) peaking in t. The universality hints
into importance of t/(u) channel singularities.
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From t-channel to s-channel (high energy forward scattering) s
a+C->b+d
t-channel

As s increase and t is fixed the
t-channel resonances (or
singularities) stay close relative
to s and u channel resonances —4m?

To obtain the amplitude i»‘»"'n..;___this
limit need to add all t-channel

s u ,
resonances ~ ’r is
T + fixed
ard>esb S N \ A bon
u-channel S increases
e=m? a+b->c+d
s-channel
u=4m2

NNV S Ia2l Jefferson Lab




From u-channel to s-channel (high energy backward scattering) &
a+c->b+d

t-channel

As s increase and u is fixed the
u-channel resonances (or
singularities) stay close relative
TT to s and t channel resonances

a+d->c+b . /% \ ‘g=4m?2 | a+b->c+d
hannel \‘ N/ . s-channel

IV =5 al Jefferson Lab




analytical continuation from s to t 86

\I

- \ - ,
A IS4 = ) [+ 1 18 ,{ ) g["'k,' 1< C- c 6 weel Sum of a large
R number of
particle

an exchange of
various
resonances in
the t-channel.

I . g -
productions at
L) \O/\O/ X \090/ 4. {:( high-s looks like
- L VA VA=A VAR, :
),—__\\\,_

Rt cyll g(\ﬂwdl“@(d ¢ gvution” Te AUy e

Use t-channel
partial waves
and analytically

\ \ \
TO N W I"ﬂ()\/‘p! §>(/1\’Q \A(’v{ ol \/\ubo\/ f)xyl 1 Vyus

\ / —— /r——. — ‘-——.— )
PN | x| 4+ 11l 7 ( 4 - continue to
T8 =t 1 large-s
boul shale o~
\/“‘Q VAYILY
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87

A(s,t) = (21 +1)fi(s)Pi(cos §)

l
converges if |cosB|<1: (e.g. 1+x+x2+... = finite for |x|<1)

z = cosf

T “s-channel”

42
TT S:_t 4dm (1—Zt)

A(s,t) = Z(Ql + 1) fi(t) Pi(2t) “+_channel”
l

(s —4m?) > 4m? for |z| > 1 and s < 0

a+b -> c+d (e.g. what is the value of 1+x+x2+... when x>1?
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Example of analytical continuation 88

t — 4m?

As,t) =D @+ DABPAE) =2 0

The series converges for |zi|<1 (cosi%e of scattering angle in the t-channel), i.e. in the t-channel

physical region. We want to know A(s,t) for in the s-channel physical region, in particular for
large s, with corresponds to |zi| >> 1.

For example, assume f;(t) =

ie. i =I
[~ o) i.e. it has a pole (resonance) where a(t)

[ 00
< 1 —z(l—«
A(s,t) ~ J(zt) = Z W fora<O0and |z <1use 77— = /0 dpe "=
l

o obtain J(2) /Ood [ v ] a/'z dy 2
0 obtain z) = T|——| ==z = ze
0 1+ ze—® o ¥ (1+y) Y
provides analytical continuation for a>0 for large z =z(s) ~ s
247 > dy 247
J(2) = — * — — —
(2) snra /Z yoti(1 +y) sin o cT

f@=14+x+x>+ -

1
f) =

1 —x

this is analog of
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reggeon 89

s-channel partial wave expansion A0 = Z 2L+ D)f(s)P(cos 6)
.

t-channel partial wave expansion  A(s, 1) = Z 21+ DfO(t)P(cos 6)
l

The amplitude at large-s (in the s-channel physical region) is dominated by a
selected, infinite set of t-channel partial waves (t-channel resonances).

This sum is referred to as a Reggeon or a Regge exchange.

Since Reggeon is a collection of partial waves and partial waves have
quantum numbers of resonances, so do Reggeon. They are like special kind
of virtual particles. For example in perturbation theory pion we can talk about
virtual, single pion exchange. A collection of all pion like exchange becomes
a Reggion with pion quantum numbers. “Reggized pion”

Reggized

T

T —
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Pomeron vs Reggeons

s-channel: multi-particle production

Cross section (mb)

3>

90

t-channel: collection of resonances: “Regge” exchanges

3>

>

>

r(t)

Yy YYVYVYY

A(s,t) ocr(t)s®?) < fit) =

[ — alt)

Y YY VY VY )

” A(s,t ~ 0) ~ i5*) ~ 50y

Exchange of t-channel partial wave with quantum numbers of the

vacuum is called the Pomeron

(exchange of non-vacuum q.n. falls with energy)

I IIIIII|
(-

102

O-tot ~ 86 — SU.UC

10

Total cross section (mb)
5

I e
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Growing Radius, partons, saturation,... o1
%k Where does to parton

(fast moving, hadron, parton,etc)

model come from ) .
=t . 2
adding correlated partons is g 6—()' log" L g(=F1)
beneficial (expansion not in g2butin g2logs) s &= (n—1)!
(slow moving hadron vacuum etc) Oé(t) — _]. + B(t)
... and in space-time assuming Pomeron a(0)=1
A(s,r1) ~ /d2kLeikLmea(—ki)logs ~ ! o—71/log(s)  hadron swells
’ 2 log(s)
AE ~ L
(1l —x)p, sk long lived fluctuations finite <x>
Par o0 1] I—o)per (@)™ =L (n) ~log(s)
— : H
random walk in transverse space
1 1/2
Ak (ri) ~y/(n)— ~log"’“(s)
. . M1
interaction when
t
~ momenta i %k large-s behavior universal
v (Pomeron = vacuum pole,

universal mid-rapidity)

W I
INDIANA U VERSITY 2} Y314




Comparing with Experiment 02

- \\lumw T T T T T T T T TTTTT ——
it " p(p)p Ep ——— : BE
P gl ! . .
' " -__ —o ] | | total cross section

l s i - K¥p 5 slowly risesf with's 7

L multi-particle 3

[ resonanc i ]

| production -
region E.

LA Sy =

2 - E

g ; .

= 5 -

2 —

g 10 -1 } : / _:

< H >

£ v, |

=10 \‘\ —

.
10 —]
. -
+1l*lm+|ﬁ ot -
| ‘ i ; VSGeV ]
10.‘ 1 1 1 L1l l| 1 1 1 1 L1 1 II 1 1

1 10 10 10 10
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Large Nc

Meson woe Lowidin @ -
ae Trvetios

03
|, o9 / |
Add 4 WMom . G =
/ 03 ,
Ne
é\ /4__-\.‘/‘ L/ \v‘
\/ l \/}—““/‘ ./
J /7& J N
- g'" ”1)
g = _ J[\
L
9. i

IIJ NIV Iaal Jefferson Lab

—(

93

N.— o
g>N. = const .

An empty digram represents
infinite number of process that
happen in a plane !

The plane can be intercepted
as a world sheet of a string/flux
tube connecting the valance
quarks

Non planar diagrams are
suppressed by 1/Nc

To leading order in 1/Nc
hadrons do not decay, that to
not scatter.



94

iR~ M|H|M) = 0(1)
( l
= M a = /f
! U
H/\ UKV'\:E/’/ v
N——" 7Y -
T Uk g (M, | H|MyMs) = g = O(113/Ng)
| /l/</ d VA4 mb
w o
Ty
/_\:_’ﬂ/_,_l‘.,_ —-'/\
|/ ’ | (1Y .
T
o7 |
T 1, | ~ I'=0(l/N) =g
' m?2—s—il (17N

Leson W
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Dualities 9

planar diagrams may be considered as either
s-channel or t-channel

S . ]
U ——y — Vi " —
K-p A t
A
K-p has “normal A —
mesons” inthet- U —— — L
channel u > > \ 4
and “normal d
baryons” in the s —> S
channel
Interpretation of what happens in Regge phenomena
s-channel is dual to what sum of t-channel resonances
happens in the t-channel : determines large-s behavior of
Mesons require baryons and vice the sOchannel and vice versa.
versa
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Does it work ? %
a C

In K-p scattering
imaginary parts of a2
and rho add up
p,az In K+p they cancel !

(o
H

d E 19.0 o (K*p) E ol
b = = |
© 185 O 46}
[ b~ :
¥ D a7

_ ? 180 @
A2 ~1+exp(ima(t)) B @ 38
5 17.5 8 34+

-~
P ~1-exp(ima(t)) 2 170 5 %
2 | " 26}

= 1 . 1 |
1850 15 20 25 30

LABORATORY MOMENTUM OF
K* MESONS (GeV/c)

LABORATORY MOMENTUM OF
K~ MESONS (GeV/c)
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Dolen Horn Schmit duality o7

” K(Om+p-Onp)

Ima®

20—
mb BeV
15

10

Fic. 7. Plot of ImA’™
at ¢=0. Comparison be-
v tween different models.

o @ 3 Ac HOHLER, CITRON
@ RESONANCE APPROX. (ROSENFELD 1967)
s ® DIFFERENCE: D - @
' @ REGGE FIT
20 }—.

u(p1, A1)[A(s,t) + (k1 + ko) Y B(s, t)]u(p2, A2)
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What about “exotic” hadrons 9

S u d u d
Y'ds (s
dibaryon pentaquark

6.
<

dimeson molecule

U 7 C
= 4 u

diquark + di-antiquark

3x3=8+1

O—@

2 Mesons VS

O—@

3x3=8+1

IIJ NIV Iaal Jefferson Lab

Standard argument for non-existence of
multi quark sates: they can fall apart to
ordinary mesons and

baryons

For example 2 quarks and 2 anti quarks

glueball can rearrange into 2 quark-antiquark
pairs
crrrrfd  Butconfinement requires quarks are
- connected by flux tubes and it is
possible that certain multi quark
qq9 hybrid configurations are more favorable than

“fall apart configurations”
3x3=6+3

2 di quarks = teraquark

3x3=6+3



Need to introduce strings 99

Talk by G.Rossi
Hadronic states — irreducible gauge invariant operators in QC

Table 11a

Simplest mesons and baryons : colour structure and string picture

HADRON GAUGE INVARIANT OPERATOR ) STRING PICTURE
. _)2 x2 “\ 'Jl X2 x,
M, =qq meson q (x,‘)) [I’ l'xp(ig J :\“ dx }l qi (xl) o0
X, i, I q q
sl 1)
M“ = quarkless Te (P vxp(l;.; T A dx )
meson "
o b (X
€ 17273 !I' vxp(iy_ J Al nlx“) q(xl)] X) X2
i M
' -l 3 q q
B qqq bary
3 eY x
(% u (X "
Pexplig | A dx q(x7) P explig j A dx q(x.)
P ) el ikt o floti”
2 2 3 &
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Other states 100

Other multiquark states
(from 6. C. Rossi & GV, Phys. Rep. 1982)

N

peseamn()

| _.

N AN T

J J
My :H !

=t
: -
-

pentaquark dibaryon
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Muti-quark states can be related to ordinary states by duality 101

Contributions to BB scattering (N. = 3)

BB BB

Junction duality diagrams  s-channel t-channel®

annihilation formation Multiplicity™ exchange Slope
s-channel | R M

. cp—— 4

tetraq uark 3 E ﬁ(S")=ﬁ¢'¢ (S’) san—l —~y 12 a'R
are dual to t- Regge pole
channel mesons 1

2-Reggeon cut

(') = e (5'19) 33~ Lo
3-Reggeon cut

2 M;
A(s)=2R e (5'14) s i~5T g

. ————————— — -

4 3
T D Non-resonant  7(s") =21, (s'/4) 57" ~s° ak
two jet Pomeron
——————————— background

)g" is the invariant mass of the final state excluding the leading baryons.
™To estimate the s-behaviour we have taken ar =().5.
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Muti-quark states can be related to ordinary states by duality 102

Contribution to BB annihilation (N. = 3)

BB-BB
Junction duality diagrams ~ s-channel 1-channel®
annihilation formation Multiplicity exchange Slope
s-channel mesons | R
= —
are dual to t- 3"; ] ‘E Iqd—jet  A(s)=dec(s) M52 M) ~ak
|
channel tetra =i iL | - Regge pole
quarks *
2 <
ml T 2ad-jets  A)=2icc(id) ™Mool )~ lag
]l ' Regge pole
pg- B L=
tetra quarks 3
should form I [ dsies A =dec(9) M~ M)~ ok
. . ! .
Regge trajectories =, ‘- Regge pole
just like mesons )
4 ==~ [Mr— MO

(s)=2ire (sf4) 5202 g2 "
2-Reggeon cut

@)To estimate the s-behaviour we have taken ag = 0.

ol

E3

I
|
|
| Np——"

[

r==-
|
I
[
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Veneziano Model

1 « number of poles : confinement
K—1(s) —il'(s)

fls) =

Quadratically spaced radial trajectories

©.@)

K(S):mer_s >Z 1 Ncos(w\/g)

— —r?—s  sin(m/s)

Linearly spaced radial trajectories (Veneziano)

K(s) ~ 15—

Veneziano amplitude : crossing symmetric:

I'(1 —a(s)I'(1 — a(r))
['(2 — a(s) — a(?))

a(s) =a+ bs

A(s, 1) =

llJ INDIANA UNIVERSITY efferson Lab




string of
relativistic
osclillators

| 3

Intcrmediate [

w — 3T

Ags.t) = FETEOIEI0)

D(=J(s) - J(2))

QCD, loop
representation,
large-N¢, AdS/
CFT, ...

string

il

w INDIANA UNIVERSITY



Other effects of partial wave analyticity 105
Scalar particle scattering 1+2 -> 3 + 4

Ai(s) = /szA(s,t(s,zs),u(s,zs))Pl(COSH)

Partial waves have “right hand” singularity (from s) and “left hand” (from t and u)
For example assume equal masses

: s — 4m?
X (mg —t(S,zS))_l t= _( 9 )(1 o ZS)
. 1 1
Ao (s) N/ dzs —
1 mg—l—( g >(1—zs)

For s>4mz2 integral is finite

For s<4m?2 - me? the detonator crosses 0 within integration limi, implying
Ao(s) has a cut for negative s

Scalar amplitudes have simple singularity structure, but partial waves a much more
complicated. They also have kinematical singularities when spin and/or unequal masse
are involved
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Bound states and Virtual States - f0(980), 106

. a0(980),
Deuteron the np molecule « a1(1420),
bound by meson exchange A . Lambda(1405)
V(r) ’
fo.rces . XYZ.
MR | 3§ ','*{‘_ Y . ...
I’ kN 1§ )
? ' Y - Thresholds are “windows” to
N T3S singularities (particles, visual
1S ® N <o states, forces” ) located on the

nearby unphysical sheet.

VIRTUAL STATE .
- They appear as cusps (if below
y Threshold threshold) or bumps (is above)
1 !
4{me-k2)  4me —>
bound state : pole on the ~— N\ ____thresholds “cut”
physical energy plane * 4 the pRysical energy plane
| | I
virtual state : pole on “unphysical %, S
sheet” closest the physical region .

IIJ INDIANA UNIVERSITY eff;?son Lab



Amplitude singularities

 A(s,t,u) has simple singularity structure. Its connection
to particles arises through (complicated) partial waves

Aj(s) = 5/ dzsA(s,t(s,2),u(s, z))

channel  Crossing t

« Singularities of partial waves are
complicated but have a more direct
physical interpretation

s channel singularities

.
.
.
S
.
-~
.
N
’.

t/u channel singularities

» However, X-sections are given by A(s,t,u) and not by partial waves. In general
“bumps” in partial waves are “washed out” and require partial wave analysis.

llJ INDIANA UNIVERSITY efferson Lab




Well known examples of cusps

Deuteron: n-p molecule bound by

meson exchange forces V() QO ~ 100 MeV < 2m7‘r << 2mN
i ' r
Mz | 38 {4 L .
'I \‘
f g ‘\ 18
hOGLTEIRR SRR 3g
(N

VIRTUAL STATE

1

Threshold

[ 1
~ 1 Z%hd
O .
* ~ R —
~ C
r 09 -1 __.-'

3S1 (deuteron) bound
state : pole on the

1
4{me-x2)  4me —>

1S4 virtual state : pole on “unphysical
sheet” close the physical region

physical energy plane *@ )
4

llJ INDIANA UNIVERSITY efferson Lab

10°

-----




— DIRECT DETERMINATION OF A SHORT NUCLEAR LIFETIME (x10~s)

25: BY THE PROXIMITY SCATTERING METHOD
1° 12
{ C——@ﬂ—c— J. LANG, R. MULLER, W. WOLFLI, R. BOSCH and P. MARMIER
Ed' 530 MeV » Laboratorium fir Kernphysik, Eidg. Techn. Hochschule, Ziirich
| 8y 8 90° Reccived 4 February 1966
207 0,.9‘ we
' l
1
| L b4t 14243 [d+C - n+p+'C),
15 s
| |
| |
104 ta7.90%g
[

— e — 3

1.5 [Mev)

b+t— 1+R, withQ-valueQ, [d+"C—n+"N*, @, = —3.82MeV],

R—2+3 withQ-valueQ, [“N*—=p+'C, @Q;= 1.59MeV],
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Classical picture

Coleman-Norton

t-channel resonance can produce s-
channel “band” if:

A (hyperon) all particles on-shell
m+1 (cC)
t m2 and m+ collinear
M (Ab) v(mz) > v(mj1)
m2(P)
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Example : Pc Kinematics

ml m3 . 2 2 2 (mg +p% _pg)(mg +p421 _p%) + )\1/2(m37p%’pg))\l//Q(mg’p%pi)
St =M PPy om2 om2
me | M4 . . ‘
mi1: Ny mo: K
287
T e T N Ims_ <0 Ims_ >0
— me 2590 Gev 27 < >
me = 2.20 GeV
b(s’
20 / dS,p(Sl)#
Ser s — s+ e
“l ms:3.4 GeV m,. : 4.449 GeV
10 |- .
my @ P
>r / //A
// _\;:—‘if//-// \‘\

—__e’-___:‘-—"'——:;/”///\\'\}‘wx — )
0 1 1 1 kl 1 s~ T T
415 42 425 43 4 &G\ 44 ’\’4;45 45 455

ms + m+ threshold T T e

 Singularities of b(s) are at s=s:  y(s) =
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Summary 112

* In QCD light quark resonances appear clearly up to ~2GeV But one expected there to be
an infinite number of them.

» At higher masses they are harder to find. To help discriminating between various
hypotheses one should “consult” with expectations from quark model and duality
arguments.

« Duality arguments are consistent with existence of multi quark hadrons.

* Veneziano model and generalizations could be used to implement these ideas in data
analysis.

» Unlike non-relativistic theory, besides resonance poles one should work about “left-hand
cuts’ (cusps), however, so far there is no unambiguous evidence for them in the data.

Thank you for your attention !
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