A global view on the Higgs self-coupling at future colliders

Stefano Di Vita (INFN Milano)

Seminar @ Dipartimento di Fisica, Università degli Studi di Genova

Oct 3, 2018

Based on

- Grojean, Panico, Riembau, Vantalon, DV [1704.01953]
- Durieux, Grojean, Gu, Liu, Panico, Riembau, Vantalon, DV [1711.03978]

- Testing BSM deformations with Higgs physics
- Higgs trilinear self-coupling at the HL-LHC
- Prospects at the HE-LHC and future e+e- colliders

- Testing BSM deformations with Higgs physics
- Higgs trilinear self-coupling at the HL-LHC
- Prospects at the HE-LHC and future e+e- colliders

Single-Higgs rates & κ -framework interpretation

Single-Higgs rates & κ -framework interpretation

Still missing: Higgs self-couplings

$$\left. \begin{array}{l} V^{\rm SM}(H^{\dagger}H) = -\boldsymbol{\mu}^{2}H^{\dagger}H + \boldsymbol{\lambda}(H^{\dagger}H)^{2} \\ \boldsymbol{v} = \sqrt{-\mu^{2}/\lambda} \\ \boldsymbol{m_{h}^{2}} = 2\lambda v^{2} \end{array} \right\} =$$

- SM (classical)
 - − $(\lambda_3, \lambda_4) \Leftrightarrow (\mathsf{m}_h, \mathsf{v}) \to \textbf{verify it!}$
- SM (quantum)
 - λ controls vacuum stability (together with y_t , α_s)

[Degrassi et al '12, Buttazzo et al '13, Bednyakov et al '15]

$$\Rightarrow \begin{array}{c} V^{\rm SM}(h) = \frac{1}{2}m_h^2h^2 + \lambda_3^{\rm SM}vh^3 + \lambda_4^{\rm SM}h^4 \\ \\ \lambda_3^{\rm SM} = \frac{m_h^2}{2v^2} \qquad \lambda_4^{\rm SM} = \frac{m_h^2}{8v^2} \end{array}_{\text{(at tree level)}}$$

remain perturbative up to $\rm M_{_{\rm PI}}$

Stefano Di Vita (INFN Milano)

Still missing: Higgs self-couplings

$$\left. \begin{array}{l} V^{\rm SM}(H^{\dagger}H) = -\boldsymbol{\mu}^{2}H^{\dagger}H + \boldsymbol{\lambda}(H^{\dagger}H)^{2} \\ \boldsymbol{v} = \sqrt{-\boldsymbol{\mu}^{2}/\lambda} \\ \boldsymbol{m_{h}^{2}} = 2\lambda v^{2} \end{array} \right\} =$$

- SM (classical)
 - $(\lambda_{_3},\lambda_{_4}) \Leftrightarrow (\mathsf{m}_{_h},\mathsf{v})
 ightarrow extbf{verify}$ it!
- SM (quantum)
 - $^ \lambda$ controls vacuum stability (together with y_t, $\alpha_s)$

[Degrassi et al '12, Buttazzo et al '13, Bednyakov et al '15]

Stefano Di Vita (INFN Milano)

Obviously: multi-Higgs production

- double-Higgs $\Rightarrow \lambda_{3}$
- $\sigma_{\rm hh}({\rm SM})$
 - ✔ 35fb @LHC14
 - \Rightarrow O(1) bound on λ_3 at HL-LHC
 - ✓ 1750fb @FCC100

 \Rightarrow ~10% on λ_3

- triple-Higgs $\Rightarrow \lambda_3, \lambda_4$
- $\sigma_{\rm hhh}({\rm SM})$
 - * 0.1fb @LHC14

⇒ no hope!

- * 5fb @FCC100
 - $\Rightarrow 2\sigma$ sensitivity on SM cross-section

[Contino et al '16 CERN-TH-2016-113

Stefano Di Vita (INFN Milano)

Limits on HH production: ATLAS

- $\sigma_{\mbox{\tiny hh}} < 0.22$ pb (0.35 pb) combined observed (expected) 95% CL limit
- $\Rightarrow \sigma_{\rm hh}/\sigma_{\rm hh}(SM) < 6.7~(10.4)$
- $\Rightarrow -5.0 < \lambda_3 \ / \lambda_3^{\text{SM}} < 12.1 \ (-5.8 < \lambda_3 \ / \lambda_3^{\text{SM}} < 12.0) \ (\text{only anomalous } \lambda_3!)$

Stefano Di Vita (INFN Milano)

Limits on HH production: CMS

CMS-PAS-HIG-17-030

• σ_{hh} < 0.72 pb (0.41 pb) combined observed (expected) 95% CL limit

- $\Rightarrow \sigma_{_{hh}}/\sigma_{_{hh}}(SM) < 21.8 \ (12.4)$
- $\Rightarrow -11.8 < \lambda_3 \ / \lambda_3^{SM} < 18.8 \ (-7.1 < \lambda_3 \ / \lambda_3^{SM} < 13.6)$ (only anomalous $\lambda_3!$)

Stefano Di Vita (INFN Milano)

Higgs self-couplings are interesting!

- Non-standard $\lambda_{\scriptscriptstyle 3}$ and $\lambda_{\scriptscriptstyle 4}$ affect physics in several ways
 - hh and hhh production @ LO
 - **h** and hh production @ **NLO** (EW)
 - EWPO (no h!) and h production @ NNLO (EW)

V) van der Bij '86 Degrassi,Fedele,Giardino '17 Kribs,Maier,Rzehak,Spannowsky,Waite '17

from Fabio Maltoni's talk at the LHCHXSWG General meeting, July 2017 @ CERN

Stefano Di Vita (INFN Milano)

Oct 3, 2018 / Higgs self-coupling / Genova

(EFT ref's) Azatov et al '15 Goertz et al '15 Cao et al '15

McCullough '13 Gorbahn,Haisch '14 (+Bizon,Zanderighi '16) Degrassi,Giardino,Maltoni,Pagani '14

Higgs self-couplings are interesting!

- Current constraints on $\sigma_{\rm hh}{}^{\rm (SM)}$ are quite loose
 - \rightarrow still room for BSM there!
- High precision Single-Higgs rates

 \rightarrow can constrain some BSM directions (that also affect HH!)

• Probe the scalar potential V(h)

 \rightarrow learn about dynamics of EW phase transition

- Interesting consequences for cosmology, e.g.
 - EW baryogenesis see e.g. Huang, Joglekar, Li, Wagner 16; Carena, Liu, Wagner 18
 - Primordial gravitational waves

see e.g. Huang, Long, Wang 16; Hashino, Kakizaki, Kanemura, Ko, Matsui 16

Beyond the κ -framework: EFT

Scale " Λ " of new physics » typical energy of the process "E" \Rightarrow EFT

BSM deformations and Higgs physics

Potentially new BSM-effects in h physics could have been already tested in the vacuum

Modifications in $h \rightarrow Zff$ related to $Z \rightarrow ff$ already constrained at LEP \checkmark

Stefano Di Vita (INFN Milano)

(courtesy of A. Pomarol@HiggsHunting2014)

BSM deformations and Higgs physics

There are others deformations away from the SM that are harmless in the vacuum and need a Higgs field to be probed

e.g.
$$\frac{1}{g_s^2}G_{\mu\nu}^2 + \frac{|H|^2}{\Lambda^2}G_{\mu\nu}^2 \rightarrow \left(\frac{1}{g_s^2} + \frac{v^2}{\Lambda^2}\right)G_{\mu\nu}^2 \xrightarrow{\text{operator}}_{\text{the vacuum}}$$

But can affect h physics:

Stefano Di Vita (INFN Milano)

My working assumptions

- Linearly realized EW symmetry (h belongs to Higgs doublet) ⇒ SMEFT
- Keep operators O_i up to dimension-6
- Operators tested in processes w/o Higgs assumed to be constrained
- Work in the Higgs basis \Rightarrow trilinear interaction $\lambda_3 = K_\lambda \lambda_{SM} = (1 + \delta K_\lambda) \lambda_{SM}$
- Further simplifying assumptions (just to limit # of O_i)
 - no CP,L,B-L, violating O_i no dipole O_i
 - flavor universality no Ψ^4 (t⁴,ttqq,q⁴)

$$\mathcal{L} \supset \mathcal{L}_{SM} + \mathcal{L}_{d=5} + \mathcal{L}_{d=6} + \mathcal{L}_{d=7} + \mathcal{L}_{d=8} + \dots$$

L violating \mathcal{P} B-L violating subleading wrt d=6

Focus on 10 O_i relevant at the LHC (not just SM tensor structures! EFT \neq k-framework) \Rightarrow 10 independent deformations of hGG, h $\psi\psi$, hWW, hZZ, h $\gamma\gamma$, hZ γ , hhGG, hh $\psi\psi$, hhh

Higgs deformations in the Higgs basis

Pomarol '14; +Gupta,Riva '14; Falkowski '15; HXSWG YR4

parametrize space of d=6 operators in a way more directly connected to observable quantities in Higgs physics

Stefano Di Vita (INFN Milano)

Triple gauge couplings – Higgs interplay

Butter et al '16, Falkowski et al '16

$$\begin{aligned} \mathcal{L}_{\text{tgc}} &= igs_{\theta_W} A^{\mu} (W^{-\nu} W^+_{\mu\nu} - W^{+\nu} W^-_{\mu\nu}) \\ &+ ig(1 + \delta g_1^Z) c_{\theta_W} Z^{\mu} (W^{-\nu} W^+_{\mu\nu} - W^{+\nu} W^-_{\mu\nu}) \\ &+ ig \left[(1 + \delta \kappa_Z) c_{\theta_W} Z^{\mu\nu} + (1 + \delta \kappa_\gamma) s_{\theta_W} A^{\mu\nu} \right] W^-_{\mu} W^+_{\nu} \\ &+ \frac{ig}{m_W^2} (\lambda_Z c_{\theta_W} Z^{\mu\nu} + \lambda_\gamma s_{\theta_W} A^{\mu\nu}) W^{-\rho}_v W^+_{\rho\mu}, \end{aligned}$$

1 extra indep

Ideally \rightarrow global fit of Higgs, diboson, EW data

e.g. Ellis, Murphy, Sanz, You 18

Stefano Di Vita (INFN Milano)

How to approach the self-coupling?

- hVV & hww tested at ~10%: is it theoretically sound to **deform only \lambda_3**?
- How large can λ_3 be, from the theoretical point of view?
- If λ_3 is large, does it **spoil** the previous **single-Higgs fits**?
- Is the **bound** on λ_3 **stable** if we allow other BSM deformations?
- Will it be **enough** to look at **inclusive rates**?
- Can we really avoid performing **global fits** for BSM?
- Can we "replace" pp \rightarrow hh with **single-Higgs observables** for λ_3 ?

Only large anomalous λ_3 ? Not really...

Remark: up to NLO, single-Higgs observables are **insensitive to h**⁴,**h**⁵,...

- They enter only at higher loop level
- Modifications of the full V(h) could still be allowed, in principle
- At NLO, κ_λ framework = EFT w/ O_6

Modification of **h**³ **only** leads to loss perturbative unitarity at low energy scales in processes like

- $V^{\scriptscriptstyle L} V^{\scriptscriptstyle L} o V^{\scriptscriptstyle L} V^{\scriptscriptstyle L} h^{\scriptscriptstyle n}$
- ^ for $|\kappa_\lambda^{}| < 10$ one gets $\Lambda \sim 5 \text{TeV}$

[Falkowski, Rattazzi (to appear)]

- See also Di Luzio, Gröber, Spannowsky [1704.02311

Are there **classes** of BSM models that, in an EFT description:

- Either deform just Higgs self-interactions (tree-level matching)
 - e.g. SU(2) scalar quadruplets (not quite a "class")
 - * still, 1-loop matching \rightarrow other single-Higgs couplings!
- Or enhance $\delta \kappa_{\lambda}$ wrt the single-Higgs couplings?
 - e.g. tuned Higgs Portal can get $\delta\kappa_{\lambda}{\sim}6$ vs other couplings O(0.1)
 - · See also De Blas et al [1412.8480], Jiang, Trott [1612.02040], Di Luzio, Gröber, Spannowsky [1704.02311]

Only large anomalous λ_3 ? Not really...

Remark: up to NLO, single-Higgs observables are insensitive to h⁴, h⁵,...

- They enter only at higher loop level
- Modifications of the full V(h) could still be allowed, in principle
- At NLO, κ_{λ} framework = EFT w/ O₆

Modification of **h**³ only leads to loss perturbative unitarity at low energy scales in processes like

- $V^{L} V^{L} \rightarrow V^{L} V^{L} h^{n}$
- [–] for $|\kappa_{\lambda}| < 10$ one gets $\Lambda \sim 5$ TeV [Falkowski, Rattazzi (to appear)]
- SEE also Di Luzio, Gröber, Spannowsky [1

Are there **classes** of BSM models that, in an EFT description:

- t in gener N scenario Either deform just Higgs self-interactions (tree-level matching)
 - e.g. SU(2) scalar quadruplets (not quite a "class")
 - still, 1-loop matching \rightarrow other single-Higgs couplings!
- Or enhance $\delta \kappa_{\lambda}$ wrt the single-Higgs couplings?
 - e.g. tuned Higgs Portal can get $\delta K_{\lambda} \sim 6$ vs other couplings O(0,1)
- See also De Blas et al [1412.8480], Jiang, Trott [1612.02040], Di Luzio, Gröber, Spannowsky [170 02311]

Stefano Di Vita (INFN Milano)

Large λ_3 in tuned Higgs Portal

 $\left\{ \begin{aligned} (H^{\dagger}H)^2 & \Rightarrow \text{tuning of quartic } \Delta \sim \frac{\theta^2 g_*^2}{\lambda_3^{\text{SM}}} \\ \partial_{\mu}(H^{\dagger}H)\partial^{\mu}(H^{\dagger}H) & \Rightarrow \delta c_z \sim \theta^2 g_*^2 \frac{v^2}{m_*^2} = \theta \varepsilon \\ (H^{\dagger}H)^3 & \Rightarrow \delta \kappa_\lambda \sim \theta^3 g_*^4 \frac{1}{\lambda_3^{SM}} \frac{v^2}{m_*^2} = \varepsilon \Delta \end{aligned} \right.$

DV, Grojean, Panico, Riembau, Vantalon [1704.01953]

- Testing BSM deformations with Higgs physics
- Higgs trilinear self-coupling at the HL-LHC
- Prospects at the HE-LHC and future e+e- colliders

Obviously: double-Higgs production

Stefano Di Vita (INFN Milano)

Double-Higgs deformation(s) [ggF]

Self-coupling & single-Higgs @NLO

Idea: trilinear coupling affects also single-Higgs rates, but **@NLO. Still, if** λ_3 is large ...

McCullough '13

Stefano Di Vita (INFN Milano)

Single-Higgs at the HL-LHC

End of LHC Run 3 \rightarrow 300 fb⁻¹ @ 14 TeV

• End of HL-LHC \rightarrow 3000 fb⁻¹ @ 14 TeV

Process		Combination	Theory	Experimental
$H \to \gamma \gamma$	ggF	0.07	0.05	0.05
	VBF	0.22	0.16	0.15
	$t\overline{t}H$	0.17	0.12	0.12
	WH	0.19	0.08	0.17
	ZH	0.28	0.07	0.27
$H \rightarrow ZZ$	ggF	0.06	0.05	0.04
	VBF	0.17	0.10	0.14
	$t\overline{t}H$	0.20	0.12	0.16
	WH	0.16	0.06	0.15
	ZH	0.21	0.08	0.20
$H \to WW$	ggF	0.07	0.05	0.05
	VBF	0.15	0.12	0.09
$H \to Z\gamma$	incl.	0.30	0.13	0.27
$H \rightarrow b\overline{b}$	WH	0.37	0.09	0.36
	ZH	0.14	0.05	0.13
$H \to \tau^+ \tau^-$	VBF	0.19	0.12	0.15

- Good sensitivity on 16 channels, O(5-10-20)%
- Estimated relative uncertainties on signal strengths μ , with pile-up 140 events/bunch crossing
- Large luminosity allows for good statistics in bins of differential measurements \rightarrow exploit!

ATL-PHYS-PUB-2014-016 + ATL-PHYS-PUB-2016-008 + ggF N³LO uncertainty+ VH (H→ZZ) split in WH,ZH

Stefano Di Vita (INFN Milano)

Only an anomalous $\lambda_3 = \kappa_\lambda \lambda_{SM}$

Use only indirect constraint from single-Higgs [first sensitivity study by Degrassi et al '16]

Optimistic CMS projections for HL-LHC

Exercise: assume 1% combined th/exp uncert

a bit worse than ATLAS HL-LHC HH projection (less optimistic assumptions) $K_{\lambda}^{2\sigma} \in [-0.8, 7.7]$

Stefano Di Vita (INFN Milano)

A global view on the Higgs self-coupling

Grojean, Panico, Riembau, Vantalon, DV [1704.01953]

HL-LHC prospects on $\delta \kappa_{\lambda}$ with ATLAS projections (~ CMS "Scenario 1") 14TeV, 3/ab, pile-up μ=140 ATL-PHYS-PUB-2014-016 + ATL-PHYS-PUB-2016-008 + ggF N³LO uncertainty HXSWG YR4 + VH (H→ZZ) split in WH,ZH

Keep only interference SM-BSM Allow for NLO corrections due to κ_{λ} With my assumptions, **10 parameters** Perform χ^2 fit with SM signal ($\mu_i^{f}=1$)

Signal strength measurements $\mu_i^f = \sigma_i \times BR^f / (\sigma_i \times BR^f)_{SM} \sim 1 + \delta\sigma_i + \delta BR^f$ Production channels: ggF,WH,ZH,VBF,ttH Decay modes: $\gamma\gamma$,WW,ZZ,bb,TT

A fit of the "usual" inclusive rates is insensitive to simultaneous global shift $\sigma_i \rightarrow \sigma_i + \Delta \& BR^f \rightarrow BR^f - \Delta$

In principle have $5 \times 5 = 25$ observables, in fact only 9 directions are independent

⇒ we expect 1 exact flat direction in a 10 parameters fit

Sorry: including Triple Gauge Couplings constraints, $BR(h \rightarrow Z\gamma)$, $BR(h \rightarrow \mu\mu)$ does not really help :(Also: Higgs width (on-shell vs off-shell) has no impact (moreover EFT interpretation problematic)

Stefano Di Vita (INFN Milano)

Exact flat direction in the global fit

Stefano Di Vita (INFN Milano)

Bound on $\delta \kappa_{\lambda}$ from inclusive rates

the flat direction is rather insensitive to the TGC constraint

Stefano Di Vita (INFN Milano)

Single-Higgs couplings fit w/κ_{λ} @NLO

Stefano Di Vita (INFN Milano)

Constrained "intermediate" scenarios

A game: let's pretend we have scenarios with some of $(\delta y_t, c_{gg}, \delta cz)$ switched off

As expected, constraining "by hand" the coefficients that control the flat direction, the bound on κ_{λ} shrinks

Oct 3, 2018 / Higgs self-coupling / Genova

Stefano Di Vita (INFN Milano)

Any model builder willing to explore

how motivated such scenarios are?

Compare & combine w/double-Higgs

Warning: here the assumption is that of linearly realized EW symmetry. Non-linear EFT \Rightarrow {1,h,h²}XY couplings unrelated \Rightarrow more parameters, global fit w/ EWPO!

Stefano Di Vita (INFN Milano)

Impact of differential VH and ttH

Inclusion of differential data $(d\sigma/dm_{inv})$ for single-Higgs observables seems promising, but more detailed estimates of the experimental systematics are required, as well as more refined analyses.

See Maltoni, Pagani, Shivaji, Zhao [1709.08649] for the impact of δκ, on single-Higgs differential distributions and for a simplified κ-framework analysis * see backup a couple of their plots

Combining differential data from single- and double-Higgs, the minimum at large $\delta \kappa_{\lambda}$ is further lifted. Synergy!

Bound from single-H not competitive but has totally different systematics ⇒ complementary to HH

Stefano Di Vita (INFN Milano)

Some simple robustness checks

Stefano Di Vita (INFN Milano)

- Testing BSM deformations with Higgs physics
- Higgs trilinear self-coupling at the HL-LHC
- Prospects at the HE-LHC and future e+e- colliders

Future colliders: a timeline

Stefano Di Vita (INFN Milano)

Stay tuned for the HL/HE-LHC YR Higgs self-coupling @ HE-LHC

14 TeV, 3/ab Grojean, Panico, Riembau, Vantalon, DV [1704.01953] $\sigma(hh,ggF)$ ~35fb

- Inclusive single-Higgs rates can't constrain $\delta \kappa_{\lambda}$ (w/ NLO effects) in generic BSM scenarios
- Double-Higgs production drives the bound (single-Higgs LO crucial for other deformations)
- Differential measurements of both h and hh help eliminate the extra minimum $\delta\kappa_\lambda^{\sim}5$
- HL-LHC is the machine for accurate differential Higgs measurements → explore prospects!

33 TeV, 10/ab $\sigma(hh,ggF) \sim 194 fb$

- Both high E and high lumi
- Probe BSM in distrib's tails
- Exploit non-SM tensor structures to disentangle flat directions in BSM fits
- Also VBF channel See e.g. Contino et al '10, '12
- Work to be done!

- HE here is just naive extrapolation! (FCC=100TeV)
- Old machine parameters, just for illustrative purposes

$\delta\kappa_{\lambda}$ bound / scenario	68%	95%	
HL: h incl, hh incl	[-1, 1.5] U [3.9, 6.4]	[-1.8, 7.5]	
HL: h incl, hh diff	[-1.1, 1.3]	[-1.7, 6.5]	
HE: h incl, hh incl	[-0.3, 0.3] U [5.0, 6.0]	[-0.5, 0.7] U [4.5, 6.7]	
HL + HE	[-0.3, 0.3]	[-0.5, 0.6] U [4.8, 6.0]	
FCC 100 TeV 30/ab h incl, hh diff	[-0.03, 0.03]	[-0.06, 0.06]	

- Uncertanties on single-H μ 's: naively extrapolated from HL-LHC

- Double-H EFT: interpolation between HL-LHC and FCC of Azatov et al '15

- NLO δκ, effect on single-H: courtesy of D.Pagani

Stefano Di Vita (INFN Milano)

The lepton collider option

Hadron

- High-energy \rightarrow discovery?
- No direct handle on partonic c.o.m. energy → pdf's
- Large QCD backgrounds
- Sensitivity to couplings to quarks

Lepton

- Lower energies but clean environment \rightarrow Higgs factories
- Lower energies achievable
- Beam polarization (extra handle)
- Sensitivity to EW couplings

Circular

- Energy limited by synchrotron radiation
- Higher luminosity
- Several interaction points
- Precise determination of beam energy

Linear

- Allows for staged development (gradual energy increase)
- Easier to control beam polarization
- Bremsstrahlung

Low-energy lepton colliders

- 2 main production modes
- 4 angular distributions in Zh
- 2 beam polarization runs ($\pm 80\%$, $\mp 30\%$)
- 7+2 decay modes ZZ, WW, $\gamma\gamma$, $Z\gamma$, $\tau\tau$, bb, gg, (cc, $\mu\mu$)
- no flat direction expected

Durieux, Grojean, Gu, Liu, Panico, Riembau, Vantalon, DV [1711.03978]

Stefano Di Vita (INFN Milano)

Oct 3, 2018 / Higgs self-coupling / Genova

3000

 $e^+e^- \to hZ$ $e^+e^- \to h\nu\bar{\nu}$ $e^+e^- \to he^+e^-$

 $e^+e^- \to h t \bar{t}$

 $\times 0.1$

Low-energy lepton colliders

- shaded band reflects different assumptions on TGCs \rightarrow large impact! global analysis needed to constrain single-Higgs deformations
- low-energy circular collider needs either combination with HL-LHC or 2 energy runs to set meaningful bounds

Stefano Di Vita (INFN Milano)

High-energy lepton colliders

more sensitive to $\delta \kappa_{\lambda} > 0$

more sensitive to $\delta \kappa_{3} < 0$

- access to double-Higgs production, ZHH / WBF complementary
- differential data in $m_{\mbox{\tiny hh}}$ add useful info
- exploit impact of polarization at ILC
- dependence on $\delta \kappa_{\lambda}$ stronger at low energy \rightarrow ILC runs at 500GeV and 1TeV maximize sensitivity

Stefano Di Vita (INFN Milano)

Comparison of future colliders reach

Durieux, Grojean, Gu, Liu, Panico, Riembau, Vantalon, DV [1711.03978]

• HL/HE-LHC

- ⁻ HL will be able to put only O(1) bound, driven by hh production
- $^-$ HE with cross-section and lumi increase \rightarrow factor 10 better
- Low energy e+e-
 - only a 240GeV circular collider is not enough: need to combine with HL-LHC or run at other energy
 - 40% precision from indirect bound (h), provided runs at both 240/250 GeV and 350 GeV are available (~few ab⁻¹ lumi)
- High-energy e+e-
 - $^-$ direct bound (hh) dominates
 - ILC maximizes sensititvity (Zh, WBF)
 - ^ CLIC loses access to Zh \rightarrow residual minimum for $\delta\kappa_{\lambda}\!\!\sim\!\!1$