DIRECT SEARCH FOR LIGHT DARK MATTER WITH THE CRESST-III EXPERIMENT

THE CRESST COLLABORATION

THE CRESST EXPERIMENT

Cryogenic Rare Event Search with Superconducting Thermometers

Direct detection of dark matter particles via their scattering off target nuclei

Scintillating CaWO₄ crystals as target

Target crystals operated as cryogenic calorimeters (~15mK)

Separate **cryogenic light detector** to detect the scintillation light signal

CRYOGENIC DETECTOR

CRYOGENIC DETECTOR

Phonon signal (≥90 %)

(Almost) Independent of particle type

Precise measurement of the deposited energy

5

SCINTILLATING CALORIMETER

Phonon signal (≥90 %)

(Almost) Independent of particle type

Precise measurement of the deposited energy

Scintillation light (few %)

Particle-type dependent

→ LIGHT QUENCHING

EVENT DISCRIMINATION

Light Yield= Light signal Phonon signal

Characteristic of the event type

ROI : region of interest for dark matter search

CRESST-II RESULTS - 2015

Lise: Background level ≈8.5 counts/(keV kg day)

Threshold: 307eV

8

Until 2017 world-leading below 1.7GeV/c²

Opened up sub-GeV/c² regime

Hunting light dark matter requires a low threshold!

CRESST-III LOW-THRESHOLD DETECTORS

Detector layout optimized for low-mass dark matter Radical reduction of dimension (250g → 24g)

- Cuboid crystals of (20×20×10)mm³ (≈24g)
- Design goal: 100 eV threshold
- Fully scintillating housing
- Instrumented sticks

Veto surface-related

background

CRESST-III phase 1
Data taking from July 2016 to February 2018

OPTIMUM FILTER

Maximizes signal-to-noise ratio (in frequency space)

Factor 2-3 typical improvement in resolution

OPTIMUM THRESHOLDS NEW FRONTIER IN DIRECT DM DETECTION

OPTIMUM THRESHOLDS NEW FRONTIER IN DIRECT DM DETECTION

DETECTOR A

= LOWEST THRESHOLD IN CRESST-III PHASE 1

Data taking period:

Non-blind data (dynamically growing):

Target crystal mass:

Gross exposure (before cuts):

Nuclear recoil threshold:

Resolution at zero energy:

10/2016 - 01/2018 20% randomly selected 23.6g 5.7 kg days 30.1 eV σ = 4.5eV

SELECTION CRITERIA (AKA "CUTS")

Objective

Keep only events where a correct determination of the amplitude (→energy) is guaranteed

Unbiased analysis

- Design cuts on <u>non-blind</u> training set (≦20%, excluded from DM data set)
- 2. Apply without change to <u>blind</u> DM data set

EFFICIENCY DETERMINATION

Simulated pulses (of desired energies) passed through analysis chain

SELECTION CRITERIA (AKA "CUTS")

Rate: Noise conditions

Stability: Detector(s) in operating point

Data quality: Non-standard pulse shapes (in particular iStick events and pileup)

Coincidences: iSticks

multi-hit events

Florian Reindl - HEPHY & TU Vienna

muon veto

EFFICIENCY

Simulated by artificial pulses placed at random positions in the data stream

Includes trigger and cuts

≥60% efficiency over broad energy range

NEUTRON CALIBRATION DATA

Unbinned maximum likelihood fit

Quenching factors measured with neutron beam

DARK MATTER DATA

Analysis optimized for very low energies: 30eV → 16keV

DARK MATTER DATA

Cosmogenic activation \rightarrow ¹⁷⁹Ta + e⁻ \rightarrow ¹⁷⁹Hf + ν_e (1.8y)

DARK MATTER DATA

Acceptance region fixed before unblinding

Energy spectrum of accepted events

expected for DM

Yellin 1D optimum interval method

Energy spectrum

CONCLUSIONS

First CRESST-III run 07/2016 - 02/2018

Unprecedented low nuclear recoil thresholds of 30.1eV

Leading sensitivity over one order of magnitude: $160 \text{MeV/c}^2 \rightarrow 1.8 \text{GeV/c}^2$

Unexpected rise of event rate < 200eV

SECOND CRESST-III RUN: JUST STARTING

Key innovation

Upgraded detector modules with dedicated hardware changes to understand backgrounds

New feature

Active magnetic field compensation with three air coils for x,y & z-axes

Holding with CaWO₄ sticks

Holding with CaWO₄ sticks

Surface effects

Holding with CaWO₄ sticks

Surface effects

Crystal (internal stress, material)

Holding with CaWO₄ sticks

Surface effects

Crystal (internal stress, material)

Holding with CaWO₄ sticks

Surface effects

Crystal (internal stress, material)

Holding with CaWO₄ sticks

Surface effects

Crystal (internal stress, material)

Holding with CaWO₄ sticks

Surface effects

Crystal (internal stress, material)

Holding with CaWO₄ sticks

Surface effects

Crystal (internal stress, material)

BACKGROUND HYPOTHESES

Holding with CaWO₄ sticks

Surface effects

Crystal (internal stress, material)

Passive scintillator

BACKGROUND HYPOT YEST

In addition:
Increased simulation
effort

rtace effects

Crystal (internal stress, material)

✓₄ sticks

Passive scintillator

October 01, 2018 Florian Reindl - HEPHY & TU Vienna 38

CURRENT STATUS

Detectors installed in May 2018

Cryogenics can be hard:
Three successful cool-downs, but warm-up after ~2weeks

Tests ongoing!

BACKUP

COMPARISON TO TAUP2017

EXTENDED MASS RANGE

TRANSITION EDGE SENSOR (TES) WORKING PRINCIPLE

GRAM-SCALE DETECTOR

 Al_2O_3 0.49g $5x5x5mm^3$

$$E_{th} = (19.7 \pm 0.9) \text{ eV}$$

Measured above ground

Measuring time 5.3h

No data quality cuts

EPJ C (2017) 77:637

GRAM-SCALE DETECTOR: THEORISTS LOVE IT SENSITIVITY FOR STRONGLY INTERACTING DM

- 1) <u>Search for a Non-Relativistic Component in the Spectrum of Cosmic Rays</u> at Earth. By J.I. Collar., [arXiv:1805.02646 [astro-ph.CO]].
- 2) Constraints on Dark Matter with a moderately large and velocity-dependent DM-nucleon cross-section. By M. Shafi Mahdawi, Glennys R. Farrar., [arXiv:1804.03073 [hep-ph]].
- 3) <u>SENSEI: First Direct-Detection Constraints on sub-GeV Dark Matter from a Surface Run.</u> By SENSEI Collaboration (Michael Crisler et al.)., [arXiv:1804.00088 [hep-ex]].
- 4) <u>Mapping The Neutrino Floor For Dark Matter-Electron Direct Detection Experiments.</u> By Jason Wyenberg, Ian M. Shoemaker., [arXiv:1803.08146 [hep-ph]].
- 5) <u>Supernova 1987A Constraints on Sub-GeV Dark Sectors, Millicharged Particles, the QCD Axion, and an Axion-like Particle.</u> By Jae Hyeok Chang, Rouven Essig, Samuel D. McDermott., [arXiv:1803.00993 [hep-ph]].
- 6) <u>Probing sub-GeV Dark Matter-Baryon Scattering with Cosmological Observables.</u> By Weishuang Linda Xu, Cora Dvorkin, Andrew Chael., Phys.Rev. D97 (2018) no.10, 103530.
- 7) <u>How blind are underground and surface detectors to strongly interacting</u>
 Dark Matter?. By Timon Emken, Chris Kouvaris., [arXiv:1802.04764 [hep-ph]].

- 8) Robust Constraints and Novel Gamma-Ray Signatures of Dark Matter That Interacts Strongly With Nucleons. By Dan Hooper, Samuel D. McDermott., Phys.Rev. D97 (2018) 115006.
- 9) <u>CNO Neutrino Grand Prix: The race to solve the solar metallicity problem.</u>
 By David G. Cerdeno, Jonathan H. Davis, Malcolm Fairbairn, Aaron C. Vincent., JCAP 1804 (2018) 037.
- 10) <u>Earth-Scattering of super-heavy Dark Matter: updated constraints from detectors old and new.</u> By Bradley J. Kavanagh., [arXiv:1712.04901 [hep-ph]].
- 11) <u>Looking for the WIMP Next Door.</u> By Jared A. Evans, Stefania Gori, Jessie Shelton., JHEP 1802 (2018) 100.
- 12) A method to define the energy threshold depending on noise level for rare event searches. By M. Mancuso, A. Bento, N. Ferreiro lachellini, D. Hauff, F. Petricca, F. Pröbst, J. Rothe, R. Strauss. [arXiv:1711.11459 [physics.ins-det]].
- 13) <u>Direct Detection of sub-GeV Dark Matter with Electrons from Nuclear Scattering.</u>
 By Matthew J. Dolan, Felix Kahlhoefer, Christopher McCabe., [arXiv:1711.09906 [hep-ph]].
- 14) <u>Probing Sub-GeV Mass Strongly Interacting Dark Matter with a Low-Threshold Surface Experiment.</u> By Jonathan H. Davis., Phys.Rev.Lett. 119 (2017) no.21, 211302.
- 15) <u>Gram-scale cryogenic calorimeters for rare-event searches.</u> By R. Strauss et al.., Phys.Rev. D96 (2017) no.2, 022009.

DETECTOR STABILITY

W-TES equipped with heaters

- Stabilization of detectors in the operating point
- Injection of heat pulses for calibration and determination of trigger threshold

QUENCHING FACTOR MEASUREMENT

@ accelerator of Maier-Leibnitz-Laboratorium

Precise determination of QFs for O, Ca & W @mK temperatures

 $O: (11.2 \pm 0.5)\%$

Ca: $(5.94 \pm 0.49)\%$ W: $(1.72 \pm 0.21)\%$

DET. A - 100eV EVENT EXAMPLES

Raw signals: no filtering, fitting etc.

