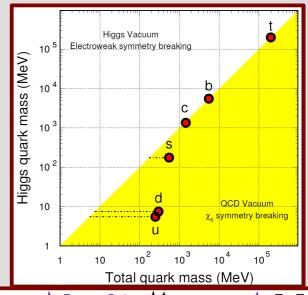
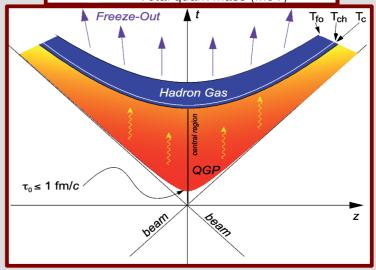


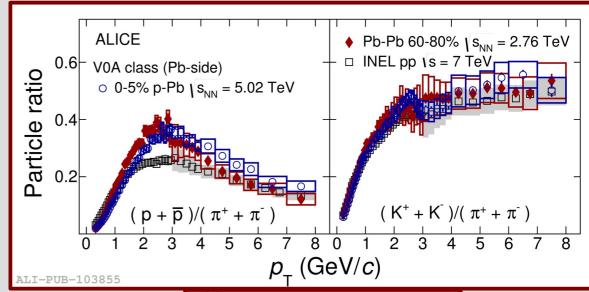
Charmed baryon production measured by ALICE at the LHC

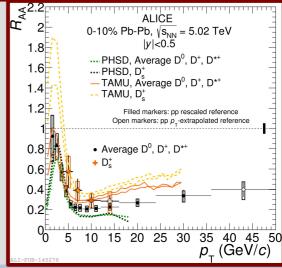

Jeremy Wilkinson (INFN Bologna)



Why open heavy flavours in heavy-ion collisions?

- Charm and beauty give a unique probe of the QGP formed in ultrarelativistic heavy-ion collisions
- Produced at early times in hard partonic scatterings (high-Q²)
 - → $\tau_{\text{c/b}}$ (≈0.01–0.1 fm/c) < QGP formation time (≈0.1–1fm/c) → experience the full evolution of the system and interact with the medium
 - $\rightarrow m_{c,b} \gg \Lambda_{QCD} \rightarrow cross section calculable within perturbative QCD framework$
- Study multiple different systems:
 - → pp collisions: Measure production cross sections, baseline for nuclear collisions, test for pQCD calculations.
 - → **p-Pb collisions**: Study cold nuclear matter effects to distinguish initial-state nuclear modifications from final-state in-medium effects
 - → **Pb–Pb collisions**: Study in-medium modifications in QGP

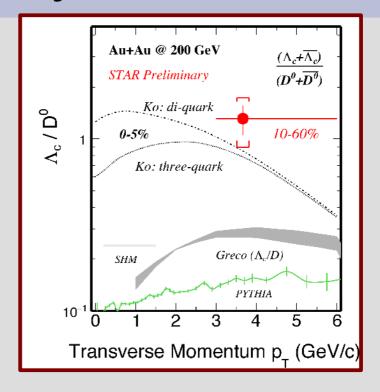

Why charmed baryons?



Vital tool to test hadronisation mechanisms in-medium

• Light-flavour sector: enhancement of Λ/K^0 and p/ π production ratios in Pb–Pb collisions compared to pp; possible effect of quark recombination/coalescence in medium? Is this effect present in the charm sector?

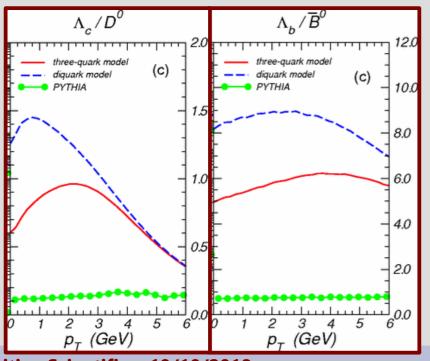
 How does this compare with strange D mesons (where recombination also plays a role)?

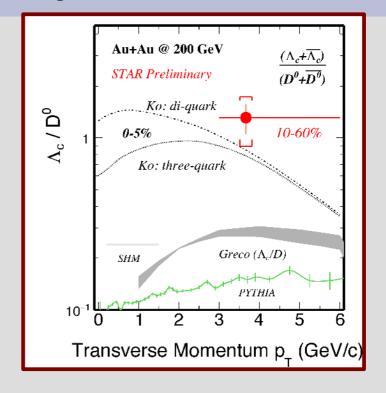


Why charmed baryons?

 Previous STAR measurement: enhancement of Λc+/D0 ratio in Au–Au collisions compared with expectations from models

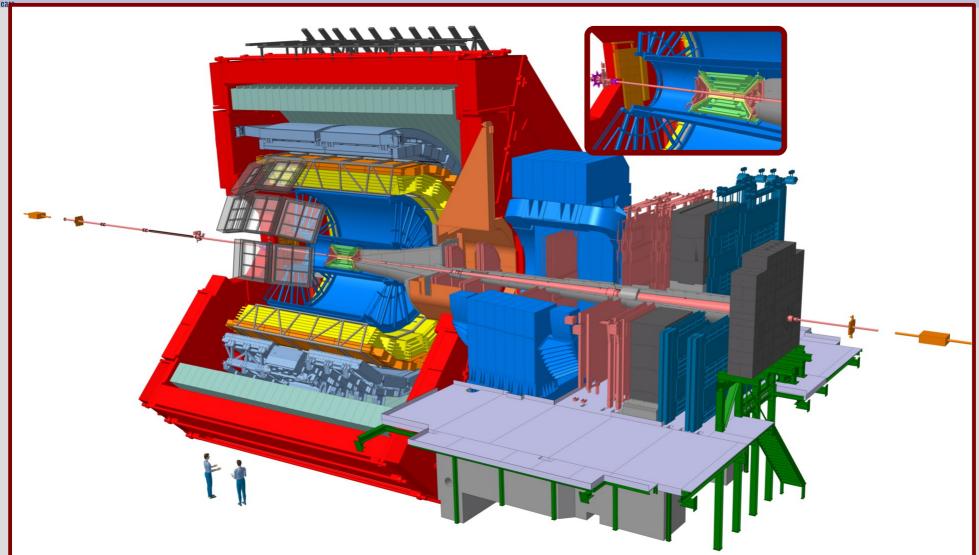
- → First sign of baryon anomaly effect in heavyion collisions in the charm sector
- → Is this effect seen at the LHC?


Istituto Nazionale di Fisica Nucle

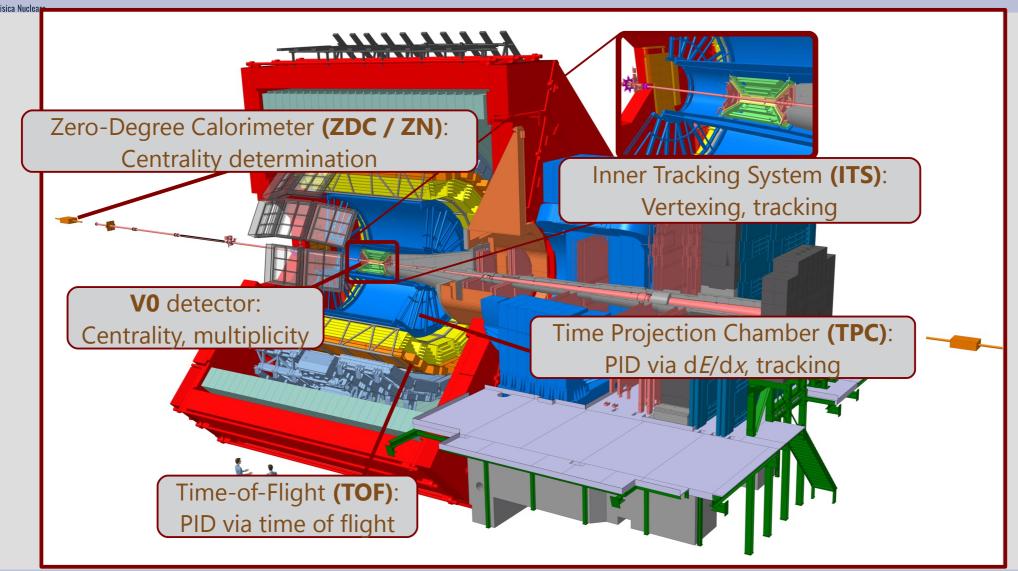

Why charmed baryons?

 Previous STAR measurement: enhancement of Λc+/D0 ratio in Au–Au collisions compared with expectations from models

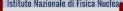
- → First sign of baryon anomaly effect in heavyion collisions in the charm sector
- → Is this effect seen at the LHC?


- Theory prediction: Enhancement of charm and beauty baryon-to-meson ratios in coalescence models, further enhanced in presence of thermalised diquarks
- Small systems also a key contributor to understanding of hadronisation

ALICE: A Large Ion Collider Experiment


Istituto Nazionale di Fisica Nuclea

ALICE: A Large Ion Collider Experiment



Data samples used

$$\rightarrow$$
 pp, $\sqrt{s} = 7$ TeV: $\sim 3x10^8$ min. bias events, $L_{int} = 6.0$ nb⁻¹

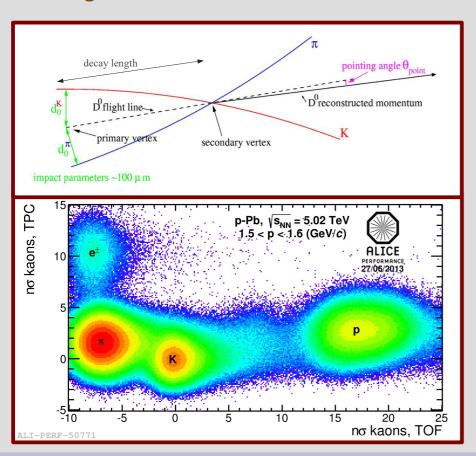
$$\rightarrow$$
 p-Pb, $\sqrt{s_{NN}}$ = 5.02 TeV: ~108 min. bias events, L_{int} = 48.6 μ b⁻¹

Run 2 (2015–2018):

→ pp,
$$\sqrt{s}$$
 = 5.02 TeV: ~9.8x10⁸ min. bias events, L_{int} = 19.6 nb⁻¹

→ p-Pb,
$$\sqrt{s_{NN}}$$
 = 5.02 TeV: ~6x10⁸ min. bias events, L_{int} = 292 µb⁻¹

→ Pb–Pb,
$$\sqrt{s_{NN}} = 5.02 \text{ TeV}$$
: ~10⁸ min. bias events, $L_{int} = 13.4 \text{ µb}^{-1}$


- → Run 2 dataset gives factor-3 increase in luminosity for pp, factor-6 for p–Pb
- → Vast improvement in statistical precision over previous results

Reconstruction of charmed hadrons in ALICE

- Strategy: full reconstruction of hadronic decays of charmed hadrons
 - → Retains full kinematic information of original particle
- Reconstruction relies on topological + particle identification (PID) selections to reduce combinatorial background

- Example: D⁰ meson: non-zero lifetime; decay vertex displaced from interaction point (primary vertex)
 - → Decay length, impact parameter, pointing angle (for example) can be used to select candidates
- PID at mid-rapidity using TOF (where available) + TPC, standard method with 'n σ ' PID
 - → Strong separation of pions, kaons and protons in wide momentum range

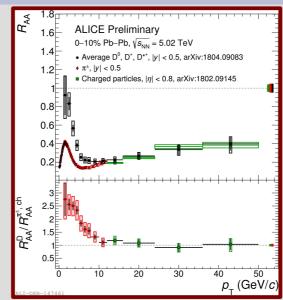
Istituto Nazionale di Fisica Nuclear

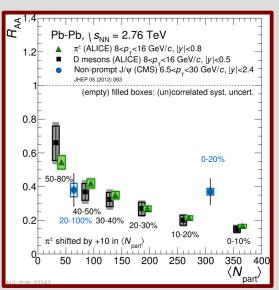
INFN Measurements of Heavy-Flavour Production in ALICE

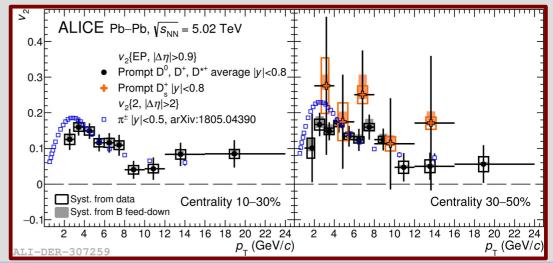
• D⁰, D⁺, D*⁺, D_s⁺ in pp collisions at multiple energies: strong test of perturbative QCD calculations

- D⁰ measured down to $p_T = 0$ using nontopological analysis; allows measurement of full mid-rapidity D⁰ cross-section without extrapolation
- Experimental results for production consistent with models (albeit in upper band of uncertainty)

√s (GeV

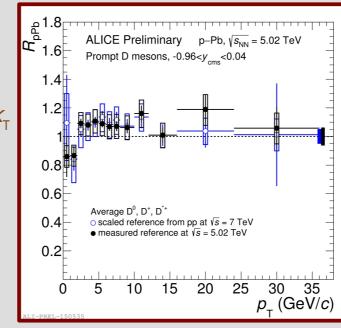


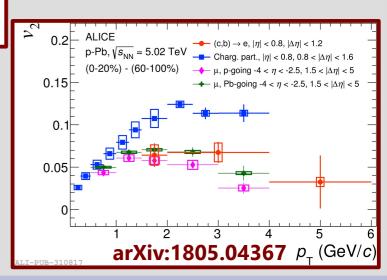

INFN Measurements of Heavy-Flavour Production in ALICE



Istituto Nazionale di Fisica Nucleare

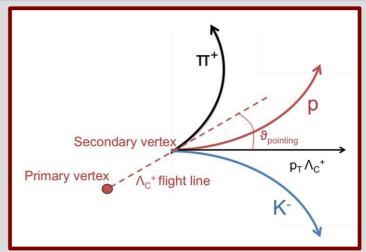
- Main observable: Nuclear modification factor (R_{AA}). Affected by energy loss of quarks in medium.
- Ratio of production in Pb–Pb to pp, scaled by number of binary collisions
- Expected hierarchy from "dead-cone" effect: ΔE (u,d,s) > ΔE (c) > ΔE (b) $\rightarrow R_{AA}$ (u,d,s) < R_{AA} (c) < R_{AA} (b)
- Significant suppression at intermediate-high p_{T} ; R_{AA} decreases with increasing N_{part}
- Azimuthal anisotropy measured with v_2 "elliptic flow" parameter
- Results for strange and non-strange D-mesons compatible with light charged hadrons → charm participates in collective expansion of medium

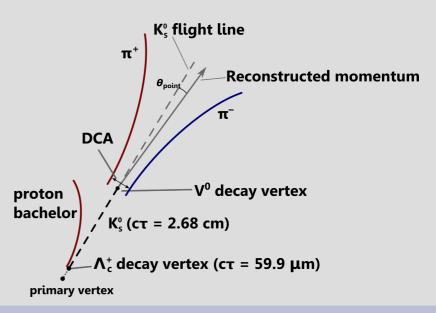

Istituto Nazionale di Fisica Nucleari


INFN Measurements of Heavy-Flavour Production in ALICE

• p–Pb collisions: Disentangle hot inmedium effects in Pb–Pb collisions from initial-state "Cold Nuclear Matter" (CNM) effects such as nuclear (anti)shadowing, $k_{\rm T}$ broadening

- R_{pPb} : similar quantity to R_{AA} . Unity implies no modification \rightarrow no significant CNM effect
- Access to run-2 pp data allows precise reference without energy rescaling, reducing systematic uncertainties
- Heavy-flavour decay electrons and muons show significant $v_2 \rightarrow$ flow-like effects in high-multiplicity p-Pb?



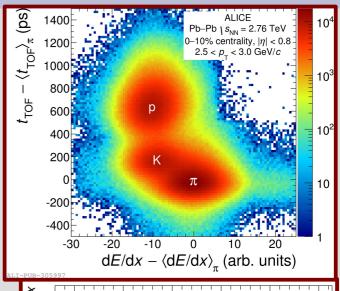


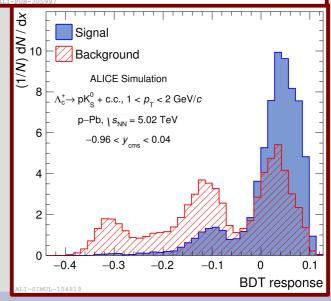
∧ baryon reconstruction in ALICE

- LITULO NAZIONAIE DI FISICA NUCIEAFE
- Λ_c in hadronic decay channels: $\Lambda_c \to pK\pi$, $\Lambda_c \to pK^0_s$ and semileptonic ($\Lambda_c \to e^+\nu_e\Lambda$)
- $\Lambda_c \rightarrow pK\pi$: BR 6.23%; three-body decay via multiple resonant + nonresonant channels
- $\Lambda_c \to pK_s^0$: BR 1.58% (x 69.20% for $K_s^0 \to \pi^+\pi^-$). Reconstructed using displaced K_s^0 vertex topology
- Typical selections include:
 - → PID of decay daughters
 - Distance of closest approach & impact parameter of decay daughters
 - → Pointing angle of reconstructed momentum w.r.t. flight line
 - \rightarrow Decay lengths of Λ_c and K_s^0
- Cross sections from each channel averaged together for final result

Analysis techniques for ∧ baryons

- Very challenging measurement: rare probe with high level of combinatorial background
 - Required development of novel identification techniques in ALICE

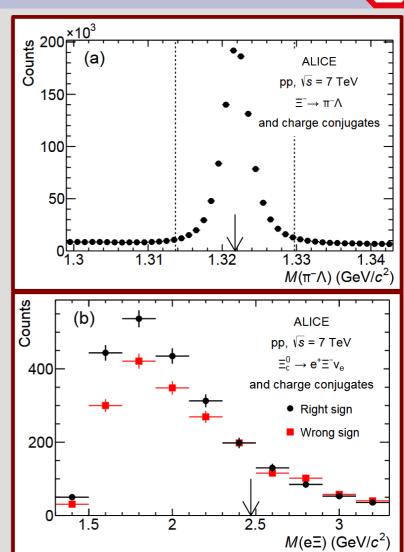

Bayesian Particle Identification [1]:


- Probabilistic approach to combine signals from TPC and TOF in regions where species overlap; "most likely" species chosen as opposed to inclusive "ng" cut
- Prior probabilities for each species defined based on particle abundances in data
- Increases purity of selected sample

Toolkit for Multivariate Analysis [2]:

- Machine learning method for signal classification with "Boosted Decision Trees" (BDT)
- Trained on kinematic variables and PID response from Monte Carlo candidates

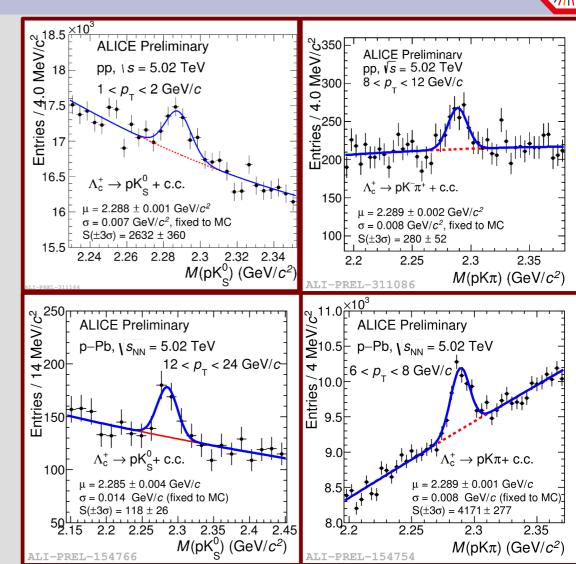
[1] Eur. Phys. J. Plus 131 (2016) no.5, 168 [2] PoS ACAT 040 (2007), arXiv:physics/0703039


Measurement of ≡ baryon in ALICE

• First measurement of Ξ_c baryon at the LHC, recently published in Phys. Lett. B

- Lightest baryon with charm + strangeness → probe interplay of both flavours in recombination
- Measured in semileptonic channel $(\Xi_c \rightarrow e^+ \Xi \nu_e)$
- Ξ daughter reconstructed in $\Lambda\pi$ decay channel; background reduction via subtraction of wrong-sign candidates
- Absolute BR unknown; measurement presented as cross section times branching fraction

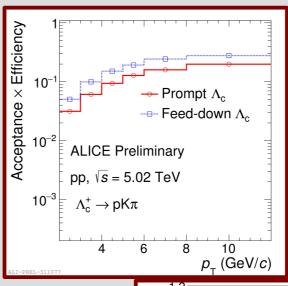
ALICE, Phys. Lett. B781(2018) 8-19

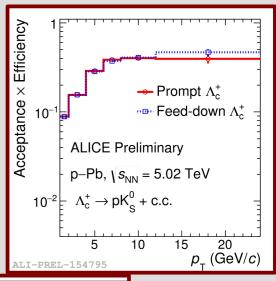


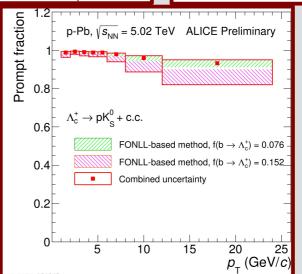
Istituto Nazionale di Fisica Nucleari

Invariant mass distributions for \bigwedge baryons

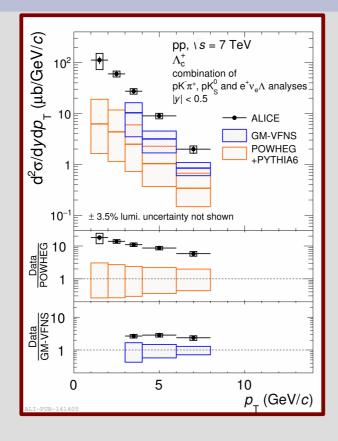
- Invariant mass distributions for both channels fitted with a Gaussian for the signal + exponential for background
- Examples shown: pK_S^0 (left) and $pK\pi$ (right) decay channels in Run-2 pp (top) and p-Pb (bottom) collisions, in various p_{τ} intervals
- Good statistical significance seen for wide range of $p_{\rm T}$
- Systematic uncertainties estimated based on varying fit parameters: line shape of background; fixing Gaussian width vs. levaing free; range of fit; rebinning of mass histogram.

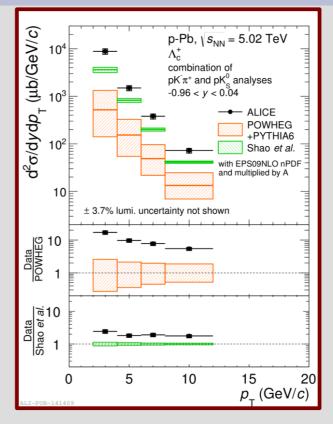




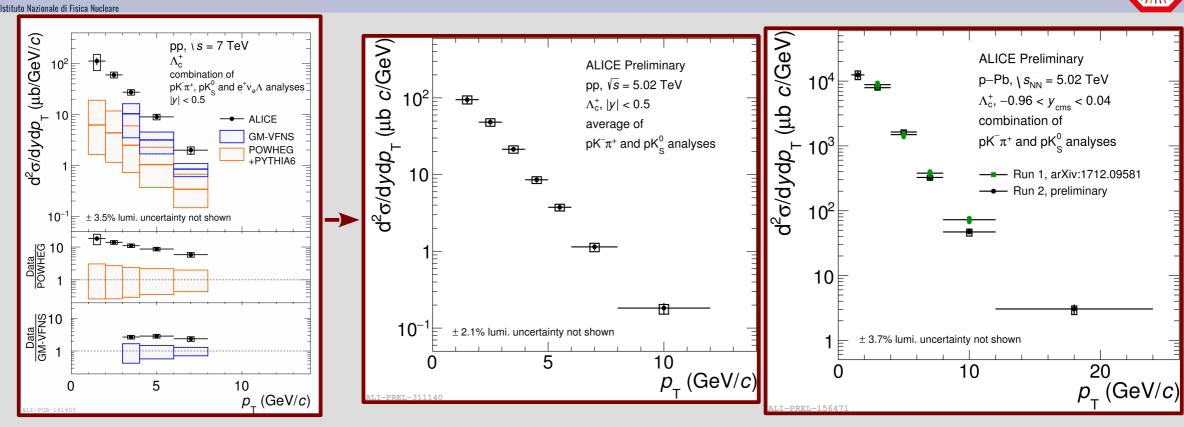

Correction factors

- Raw yield from invariant mass fit corrected for detector acceptance and reconstruction efficiency to obtain cross section
- Estimation made using simulated Λ_c from charm-enriched PYTHIA simulation (+HERWIG for heavy-ion collisions)
- Efficiency of feed-down from $\Lambda_{\rm b}$ baryons used along with FONLL pQCD calculations to estimate prompt fraction of $\Lambda_{\rm c}$
- Further systematics estimated from p_T shape in MC, theory uncertainties on feed-down estimate, efficiency correction with different cuts





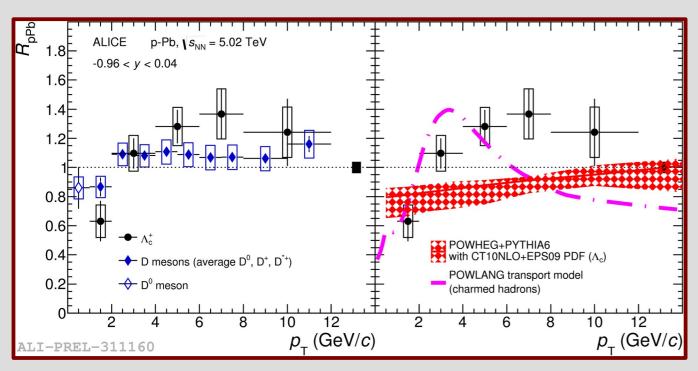
Cross sections of Λ baryons from run-1 data



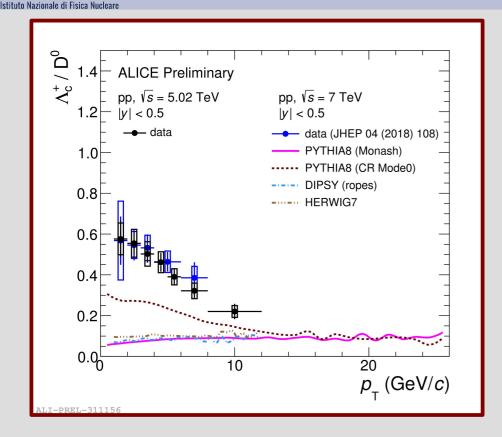
• Λ_c in pp collisions at 7 TeV and p–Pb collisions at 5.02 TeV: Production cross-sections significantly underestimated by MC models

ALICE, JHEP 1804 (2018) 108

INFICross sections of Λ_c baryons from Run-1 and Run-2 data



• New preliminary results extend p_T reach ([1,8] \rightarrow [1,12] GeV/c for pp, [2,12] \rightarrow [1,24] GeV/c for p-Pb) and reduce statistical + systematic uncertainties; finer p_T binning achieved in pp collisions

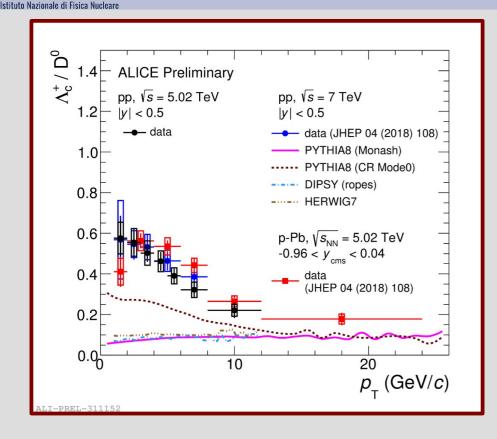

- POWLANG: includes small QGP formation
- POWHEG+PYTHIA6: only considers CNM effects

- R_{pPb} of Λ_c baryons in p-Pb
- Cross section in p-Pb collisions divided by pp cross section, scaled by mass number of Pb nucleus
- Value of unity consistent with no initial-state "cold nuclear matter" effects in collision
- Results consistent between charmed baryons and mesons, no significant CNM effects
- $\Lambda_c R_{pPb}$ described reasonably well by PYTHIA/POWLANG models within uncertainties

Baryon-to-meson ratio in small systems

- Λ_c/D^0 baryon-to-meson ratio as function of p_T at midrapidity in pp collisions at both energies
- No significant difference with collision energy between the sets of results
- Improved precision & $p_{\rm T}$ reach reveals significant downward trend towards higher $p_{\rm T}$
- Models with e⁺e⁻ fragmentation not able to predict magnitude or shape of ratio
- PYTHIA8 including enhanced colour reconnection comes closer to data

PYTHIA8 Monash: P. Skands et al., Eur. Phys. J. C (2014) 74:3024 Colour reconnection (CR): J. R. Christiansen and P. Skands, JHEP 08 (2015) 003


DIPSY: JHEP 08 (2011) 103

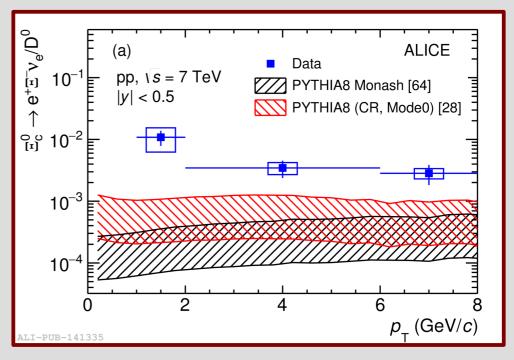
HERWIG7: Eur. Phys. J. C58 (2008) 639-707

Baryon-to-meson ratio in small systems

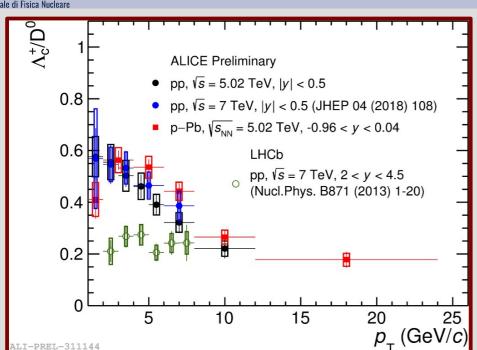
- Λ_c/D^0 baryon-to-meson ratio as function of p_T at midrapidity in pp collisions at both energies
- No significant difference with collision energy between the sets of results
- Improved precision & $p_{\rm T}$ reach reveals significant downward trend towards higher $p_{\rm T}$
- Models with e⁺e⁻ fragmentation not able to predict magnitude or shape of ratio
- PYTHIA8 including enhanced colour reconnection comes closer to data
- p–Pb results consistent

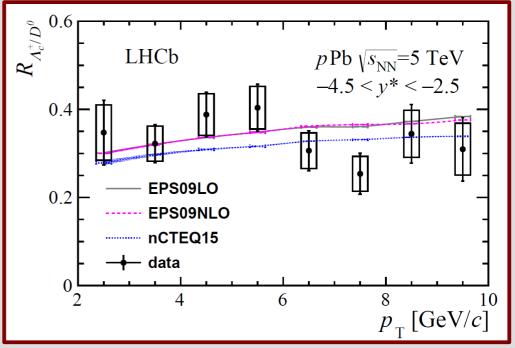
PYTHIA8 Monash: P. Skands et al., Eur. Phys. J. C (2014) 74:3024 Colour reconnection (CR): J. R. Christiansen and P. Skands, JHEP 08 (2015) 003


DIPSY: JHEP 08 (2011) 103

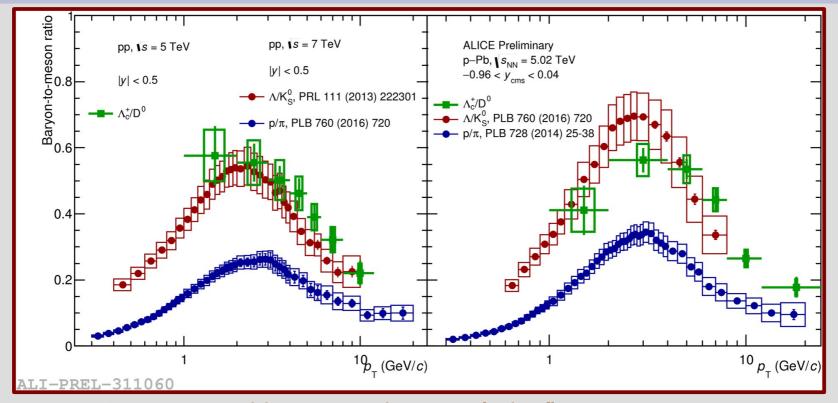

HERWIG7: Eur. Phys. J. C58 (2008) 639-707

Ξ_c / D^o production in pp collisions


- Baryon-to-meson ratio for strange charmed baryons in 1 < $p_{\scriptscriptstyle T}$ < 8 GeV/c
- Compared with PYTHIA8 Monash tune & colour reconnection models
- Factor ~10 discrepancy between results and models; → further work needed on theory side to understand charm baryon hadronisation


[1] ALICE Collaboration, Phys.Lett. B781 (2018) 8-19

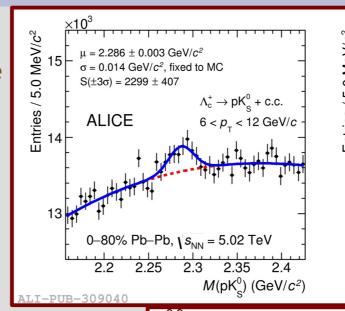
Baryon-to-meson ratios: Comparison with LHCb

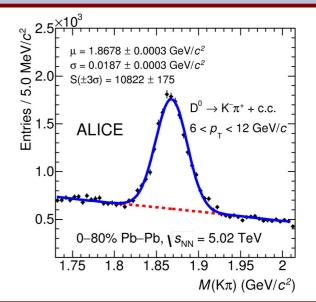


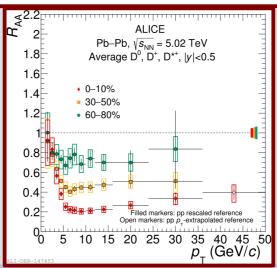
- pp collisions: LHCb results (forward rapidity) significantly below ALICE results (mid-rapidity). Possible rapidity dependence of hadronisation processes?
- p–Pb collisions: Results closer than in pp collisions but still higher for ALICE at low $p_{\scriptscriptstyle T}$
- EPS09 calculations (including tuning to LHCb pp results) describe LHCb data well at forward rapidity

LHCb: arXiv:1809.01404

- Baryon-to-meson ratio compared between charm & light flavours
- Striking similarity between Λ_c/D^0 and Λ/K_s^0 for both collision systems; ρ_T shape similar to ρ/π ratio
- Future goal: finer p_{τ} binning in p-Pb to better compare flavour dependence

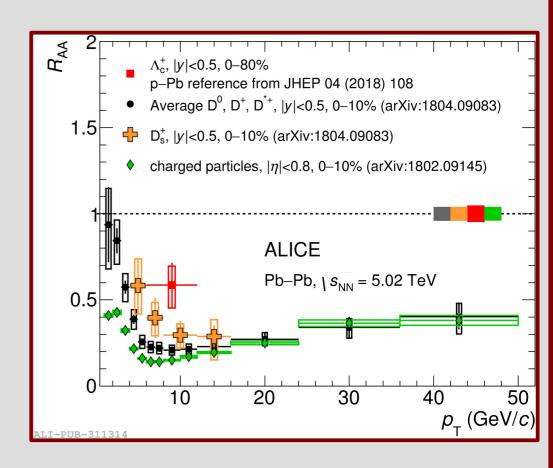

Istituto Nazionale di Fisica Nucleari


Λ_c in Pb-Pb collisions

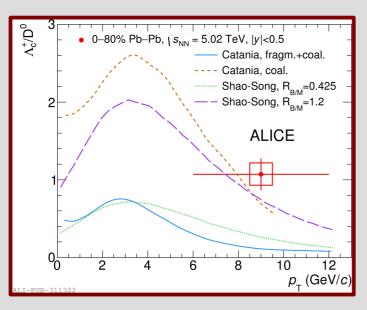


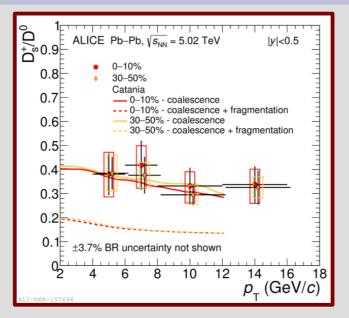
First measurement in Pb–Pb collisions at the LHC

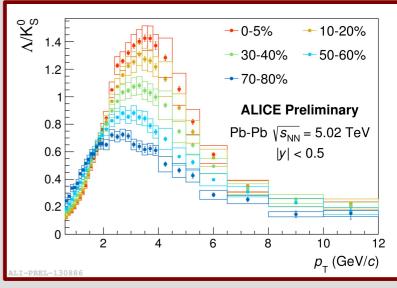
- With current data sample, currently one pT interval analysed in minimum-bias (0–80% centrality) Pb–Pb collisions
- D⁰ meson re-analysed in same pT / centrality for consistent reference
- Major observable: R_{AA} : particle yield in Pb– Pb collision divided by yield in pp, scaled by number of binary collisions
- Existing D-meson results from run-2 show significant suppression in central midcentral collisions



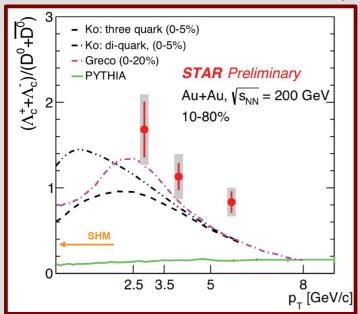
Λ_c and D_s^+ in heavy-ion collisions

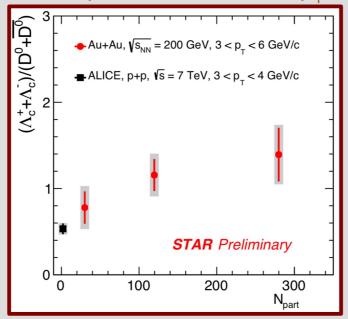

- $\Lambda_c R_{AA}$ measured using p-Pb result as reference
- Compared with R_{AA} of pions, charged particles, nonstrange D mesons and strange D mesons.
 - $\rightarrow \Lambda_c$ production significantly higher than D mesons
 - → Hierarchy at intermediate p_T implies ΔE (u,d,s) > ΔE (c) (expected from dead cone effect)
 - \rightarrow D_s⁺ production increased over non-strange D mesons; further increase for Λ_c . Stronger recombination effect for baryons?

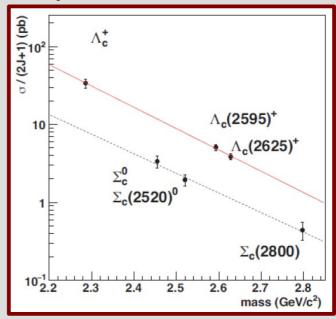




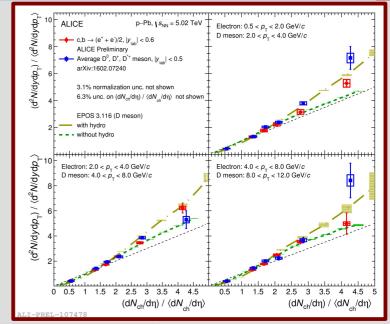
Λ_c and D_s^+ in heavy-ion collisions

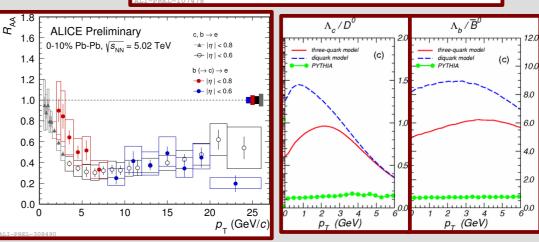

- Λ_c / D⁰ ratio: Enhancement over unity in Pb–Pb collisions, significantly higher than pp and p–Pb collisions. Result underestimated by most existing models.
- D_s⁺ production modelled better with pure coalescence model than coalescence + fragmentation. No centrality dependence seen.
- Λ_c/D^0 appears higher than Λ/K_s^0 in Pb–Pb at same p_T , despite being similar in small systems
 - → needs further statistics to better study flavour dependence




Comparison with other experiments

- Recent updated measurement by STAR in Au–Au collisions:
 - → Enhancement of Λ_c /D⁰ ratio increases going to lower ρ_T ; similar shape to pp/p–Pb from ALICE
 - $\rightarrow \Lambda_c/D^0$ increases going towards higher centrality; recombination stronger in larger medium?
 - \rightarrow Diquark coalescence slightly favoured over three-quark model; supported also by Belle result for Λ_c and Σ_c production
 - → Look to 2018 Pb–Pb campaign for improved statistics for p_{τ} / centrality studies




Prospects for future measurements

Multiplicity dependence in small systems:

- Heavy-flavour yields as function of multiplicity probe role of multi-parton interactions (MPI) in particle production
- D mesons, heavy-flavour decay electrons: Moderate faster-than-linear trend seen; results better described by models that include hydrodynamics than without
- Possible modification of Λ_c measurement vs multiplicity will determine if this plays a role in baryon formation
- Λ_b/B^0 measurement
- Beauty found to be less suppressed than charm; models predict higher Λ_h/B^0
- Further test flavour dependence of hadronisation processes

Conclusions / outlook

- Λ_c and Ξ_c baryons successfully studied in pp, p–Pb and Pb–Pb collisions with ALICE
- Baryon-to-meson ratio in charm sector shows similar behaviour to light flavours in small systems
- Significant enhancement of Λ_c/D^0 production ratio in Pb–Pb compared to pp and p–Pb collisions \to confirms observation made by STAR. Larger system size seems to lead to higher production ratio
- Models (esp. including e⁺e⁻ fragmentation) unable to adequately describe observed production; needs further work to understand baryon hadronisation in hadronic collisions
- Outlook: 2018 Pb–Pb campaign will be crucial for improved statistics to allow $p_{\rm T}$ and centrality dependence
- Run 3, 4: Access to Λ_{h} , Σ_{c} to further study flavour and spin dependence