Toward precision physics with jet substructure

Marat Freytsis

U. of Oregon → IAS Università di Genova/INFN – Sezione di Genova September 26, 2018

From searches to precision

- Detailed LHC jet measurements \longrightarrow explosion of new ideas and observable
- Originally mostly focused on signals for searches
- Better theory understanding has made us realize many of these observables are interesting in their own right
- Detailed study of observables
 - \longrightarrow start to really understand underlying theory

[arXiv:1307.0007]

[arXiv:1711.08341]

SM understanding from understanding jets

- We are now in a position to start using jet observables as probes of the SM itself
- Both experimental and theoretical understanding will have to advance to make full use of this opportunity
- But some early steps can already be taken

Plan

- Introduction
- Boosting $H
 ightarrow b ar{b}$ with machine learning
 - Method and architecture
 - Tagging boosted Higgs
 - Performance and projected constraints
- Prospects for an all-hadronic W mass measurement
 - General method
 - Statistical uncertainties
 - Systematic uncertainties
- Concluding thoughts

Boosted H on the verge

[arXiv:1709.05543]

Search based on double b-tagging and m_{groomed} event selection

More sensitivity through more substructure

- Unlike most background $bar{b}, H o bar{b}$ is a color singlet
- 'Traditional' measurement of color flow via jet pull

[arXiv:1001.5027]

$$\mathbf{r}_i = (\Delta y_i, \Delta \phi_i), \qquad \mathbf{t} = \sum_{i \in ext{jet}} rac{p_{T,i} |r_i|}{p_T^{ ext{jet}}} \mathbf{r}_i$$

• More modern variable built out of N-subjetiness

[arXiv:1710.01305]

$$\beta_{3} = \left(\tau_{1}^{(0.5)}\right)^{a} \left(\tau_{1}^{(1)}\right)^{b} \left(\tau_{1}^{(2)}\right)^{c} \left(\tau_{2}^{(1)}\right)^{d} \left(\tau_{2}^{(2)}\right)^{e} \\ \tau_{N}^{(\beta)} = \sum_{i \in jet} \frac{p_{T,i}}{p_{T}^{jet}} \min\{R_{1i}^{\beta}, \dots R_{Ni}^{\beta}\}$$

• Can we do better?

Taking the next step with machine learning

Two-stream convolutional neural network

- Split event into individual jets images and full event image
- Add padding layers to event image to account for ϕ invariance
- Smear core of jets inside event image to remove substructure

Tagger performance Significance (= $\epsilon_S/\sqrt{\epsilon_B}$) improvement

- Binned likelihood fit in 7 GeV bins for $p_T > 450 \, {
 m GeV}$
- CNNs outperform best single human-built variables (β_3)
- Removing neutral layer still leads to noticeable improvement
 - method is pileup resistant

Tagger performance Are we learning anything new?

- Reweight all events by β_3^{-1} to remove correlated info
- Retrain network
- Remaining radiation pattern shows uncorrelated sensitivity remains

Tagger performance Detection with integrated luminosity

- Observation possible with data already recorded
- Both discovery and measurement by the end of Run III
- + O(1) of the significance is coming from event image stream
 - ▶ Color singlet/octet information exists at sizable *R* away from jets

Constraining the SM EFT

Modifying pp o H

$$\begin{split} \mathcal{L}_{\mathrm{eff}} &= \mathcal{L}_{\mathrm{SM}} \! + \! \left(c_{\! y} \frac{y_t}{v^2} \left| H \right|^2 \! \bar{Q}_L \tilde{H} t_R + \mathrm{h.c.} \right) \! + \! c_H \frac{1}{2v^2} \left. \partial_\mu \left| H \right|^2 \partial^\mu \left| H \right|^2 \\ &+ c_g \frac{\alpha_s}{12\pi v^2} \left| H \right|^2 \! G^a_{\mu\nu} G^{a\mu\nu} + \bar{c}_g \frac{\alpha_s}{8\pi v^2} \left| H \right|^2 \! G^a_{\mu\nu} \tilde{G}^{a\mu\nu} \, . \end{split}$$

- Degeneracy in total rate only broken at high p_T
- Constraints with ML will be better than global average without Higgs by factor of $\sim 2\text{--}3$

Plan

• Introduction

- Boosting $H
 ightarrow b ar{b}$ with machine learning
 - Method and architecture
 - Tagging boosted Higgs
 - Performance and projected constraints
- Prospects for an all-hadronic W mass measurement
 - General method
 - Statistical uncertainties
 - Systematic uncertainties
- Concluding thoughts

Current state of m_W

Gfitter, [arXiv:1803.01853]

Previous measurements

 $\Delta m_W^{(\ell
u qq)} = \pm 54 \pm 25 \,\mathrm{MeV}$ $\Delta m_W^{(4q)} = \pm 70 \pm 28 \pm 28 \,\mathrm{MeV}$ stat. + syst. (+ FSI) ALEPH, [arXiv:hep-ex/060511]

$$\Delta m_W^{(\ell
u)} = \pm 7 \pm 11 \pm 14 \text{ MeV}$$

stat. + exp. syst. + mod. syst.
ATLAS, [arXiv:1701.07240]
also CDF, [arXiv:1203.0275]
D0, [arXiv:1203.0293]

The all-jet final state? (HL)-LHC edition

hard? \longleftrightarrow crazy?

13/27

Signal and background

- $W + \text{jets}, Z + \text{jets}, \text{QCD multijets}, t\bar{t}, \text{ single } t$
- MadGraph with simple detector simulation tuned to current ATLAS/CMS jet substructure performance
- Pseudodata corresponding to HL-LHC luminosity

Choice of tagger

- Flatten background by decorrelating jet substructure selection from m_j [arXiv:1603.00027]
- Small effect on signal efficiency, better control of background

Extracting of W and Z mass peaks

- Enriched sample of Z bosons with double b tag
- Measure Δm_{WZ} so that many experimental systematics cancel

Statistical uncertainty

- Assume current detector performance and triggers
- Statistical precision for m_W

Selection	Int. luminosity	σ_{m_W} [MeV]
decorrelated $N_2^{eta=1}$ 1%, $p_T > 500{ m GeV}$	$300\mathrm{fb}^{-1}$	75
decorrelated $N_2^{eta=1}$ 1%, $p_T > 500{ m GeV}$	$3000{\rm fb}^{-1}$	23

• Statistical precision for Δm_{WZ}

Selection	Int. luminosity	σ_{m_W} [MeV]
decorrelated $N_2^{eta=1}2\%$, $p_T > 500{ m GeV}$	$300\mathrm{fb}^{-1}$	171
decorrelated $N_2^{eta=1}5\%, p_T > 500{ m GeV}$	$3000\mathrm{fb}^{-1}$	48

• Limited by
$$Z o b ar{b}$$
 cross section

Where the LHC stands now

no double b tag

double b tag

CMS, [arXiv:1709.05543]

Trigger strategy

- Current trigger threshold for ATLAS/CMS $p_T\gtrsim 500\,{
 m GeV}$
- Alternative approaches storing lower size events at higher rates allows going to $p_T\gtrsim 200\,{\rm GeV}$
- Assume substructure evaluated at L1 or HLT level at HL-LHC

CMS, [arXiv:1806.00843]

Strategy	Selection	Int. luminosity	σ_{m_W} [MeV]
measure m_W	decorrelated N $_2^{eta=1}$ 1%, $p_T > 500{ m GeV}$	$3000{\rm fb}^{-1}$	23
measure m_W	decorrelated N $_2^{eta=1}$ 1%, $p_T > 400{ m GeV}$	$3000{\rm fb}^{-1}$	21
measure m_W	decorrelated N $_2^{eta=1}2\%, p_T>300{ m GeV}$	$3000{\rm fb}^{-1}$	13
measure $m_Z - m_W$	decorrelated N $_2^{eta=1}5\%, p_T > 500{ m GeV}$	$3000{\rm fb}^{-1}$	48
measure $m_Z - m_W$	decorrelated N $_2^{eta=1}5\%, p_T>400{ m GeV}$	$3000{\rm fb}^{-1}$	40
measure $m_Z - m_W$	decorrelated N $_2^{eta=1}5\%, p_T>200{ m GeV}$	$3000{\rm fb}^{-1}$	32

Systematic uncertainties

Experimental uncertainties

- Assume particle-flow reconstruction, evaluating systematic effects separately on charged particles, γ (and π^0), and neutral hadrons
- Estimate precision of energy scale calibration needed to achieve $\Delta m_W < 10\,{\rm MeV}$

Effect	Understanding needed	Typical current
	for $\sigma_{m_W}=10{ m MeV}$	precision
Charged particle energy scale	0.03%	0.05%
Photon (and π^0) energy scale	0.06%	0.1%
Neutral hadron energy scale	0.1%	1%
200 pileup interactions	1.4%	1%

- Uncertainties cancel when measuring $\Delta m_{W\!Z}$
 - Residual effects from hadronization model affecting $W \rightarrow q\bar{q}'$ vs. $Z \rightarrow b\bar{b}$ jet response (more below)

Perturbative effects

 $p_T > 300 \,\mathrm{GeV}$

- Prediction of *W* boson kinematics not a limiting factor in hadronic final state
- Need prediction at 5 % level of how much substructure selection changes m_W

Nonperturbative effects

- Disabling non-perturbative effects (MPI and hadronization in Pythia8) to estimate size of effect on both m_W and Δm_{WZ}
 - ▶ 10 times smaller for Δm_{WZ} than for m_W
- Comparing $Z \to q\bar{q}$ and $Z \to b\bar{b}$ mass peaks to estimate size of hadronization effects on Δm_{WZ}

Quantity	Effect	Size of effect	Understanding needed
			$\text{for } \sigma_{m_W} = 10 \text{MeV}$
m_W	$N_2^{eta=1} < 0.2$ selection	310 MeV	3%
m_W	non-pert. corrections	1100 MeV	0.9%
Δm_{WZ}	non-pert. corrections	110 MeV	9%
m_Z	$Z o q ar q ext{ vs. } Z o b ar b$	140 MeV	7%

Where MC generators stand now

- Estimate current understanding of convolution of perturbative and nonperturbative effects by comparing Pythia8 and Herwig++
- Depends on grooming algorithm and substructure selection
- $\delta m_W^{\text{had}} \sim 200\text{--}1000 \,\text{MeV}$
- $\delta m_{WZ}^{\rm had} \sim 50\text{--}500 \,{
 m MeV}$
- $\delta m_Z^{b\bar{b}} \sim 50\text{--}500 \,\mathrm{MeV}$

Where MC generators stand now

- Estimate current understanding of convolution of perturbative and nonperturbative effects by comparing Pythia8 and Herwig++
- Depends on grooming algorithm and substructure selection
- $\delta m_W^{\rm had} \sim 200 1000 \, {\rm MeV}$
- $\delta m_{WZ}^{\rm had} \sim 50\text{--}500 \,{\rm MeV}$
- $\delta m_Z^{b\bar{b}} \sim 50\text{--}500 \,\mathrm{MeV}$

Where MC generators stand now

- Estimate current understanding of convolution of perturbative and nonperturbative effects by comparing Pythia8 and Herwig++
- Depends on grooming algorithm and substructure selection
- $\delta m_W^{\rm had} \sim 200 1000 \, {\rm MeV}$
- $\delta m_{WZ}^{\rm had} \sim 50\text{--}500 \,{\rm MeV}$
- $\delta m_Z^{b\bar{b}} \sim 50-500 \,\mathrm{MeV}$

Constraining nonperturbative effects

- Nonperturbative effects strongly reduced by substructure selection and at high jet p_T
- Pythia–Herwig difference for Δm_{WZ} reduced to 10–50 MeV at $p_T > 500 \, {
 m GeV}$
- Differential measurement of Δm_{WZ} vs. p_T and substructure promising to contain nonperturbative effects

Discussion

- The leading theoretical task will be an extraction of nonperturbative corrections, either from other data or self-consistently with mass measurement itself
 - W boson groomed N_2 and groomed mass (a color singlet)
 - ▶ *cf.* groomed *D*₂ [arXiv:1708.06760,1710.00014,1710.06859]
 - ▶ cf. groomed m_t [arXiv:1708.02586]
 - A statement on universality of nonperturbative corrections for hadronic W and Z decays
- Measurement of m_W peak interesting in itself, since it can help to better understand hadronization of boosted W/Zbosons, supporting searches
- HE-LHC would allow access to even higher p_T with smaller nonpertrubative effects

Plan

• Introduction

- Boosting $H
 ightarrow b ar{b}$ with machine learning
 - Method and architecture
 - Tagging boosted Higgs
 - Performance and projected constraints
- Prospects for an all-hadronic W mass measurement
 - General method
 - Statistical uncertainties
 - Systematic uncertainties
- Concluding thoughts

Conclusions

- Using modern ML techniques high- $p_T H \rightarrow b\bar{b}$ is already on the verge of od discovery
 - Can soon be turned into measurement and precision constraint opportunity
 - Our two-stream NN approach suggests there is more information in color flow waiting to be used
- Hadronic m_W measurement could avoid experimental systematic uncertainties related to measurement of E_T and theoretical uncertainties related to m_T
 - Measurement of Δm_{WZ} more feasible than m_W itself
 - New trigger strategies needed to reach statistical uncertainty of 30 MeV with 3000 fb⁻¹ of HL-LHC data
 - Measurement limited by the understanding of nonperturbative contributions the the masses of $W \rightarrow q\bar{q}'$ and $Z \rightarrow b\bar{b}$
- In both cases, much work still to be done

Thank you!