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From searches to precision

e Detailed LHC jet measurements
— explosion of new ideas and observable

e Originally mostly focused on signals for searches

e Better theory understanding has made us realize many of
these observables are interesting in their own right

e Detailed study of observables
— start to really understand underlying theory
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SM understanding from understanding jets

e We are now in a position to start using jet observables as
probes of the SM itself

e Both experimental and theoretical understanding will have to
advance to make full use of this opportunity

e But some early steps can already be taken
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Boosted H on the verge
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Search based on double b-tagging and mgroemea €vent selection
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More sensitivity through more substructure

Unlike most background bb, H — bb is a color singlet

‘Traditional’ measurement of color flow via jet pull
[arXiv:1001.5027]
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Can we do better?
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Taking the next step with machine learning

Three Color Channel Jet Images
(arxiv 161 MADGRAPHS_aMC@NLO 2.6.2 > PYTHIA 8.226

Signal : pp > Hj [QCD], H{{QCD]  Background : pp > i

. Event Display taken from CMS Fireworks/cmsShow.
This particular event shown is for demonstration

purposes only.
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Two-stream convolutional neural network
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e Split event into individual jets images and full event image
e Add padding layers to event image to account for ¢ invariance

e Smear core of jets inside event image to remove substructure
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Tagger performance
Significance (= es/\/ep) improvement
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e Binned likelihood fit in 7 GeV bins for p; > 450 GeV
e CNNs outperform best single human-built variables (33)

e Removing neutral layer still leads to noticeable improvement
» method is pileup resistant
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Tagger performance

Are we learning anything new?
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115G

Weighted so 85, AR

- dev)
eV < My < 135GeV looks like Background

0075
0050
0025
0000
0025
0050

~0.075

~0.100

—0.125

o Reweight all events by 55 ! to remove correlated info
e Retrain network

e Remaining radiation pattern shows uncorrelated sensitivity
remains
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Tagger performance

Detection with integrated luminosity

Boosted H - bb Significance

— Machine Learning
7k - - Standard Search

Significance
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e Observation possible with data already recorded
e Both discovery and measurement by the end of Run III
e O(1) of the significance is coming from event image stream
» Color singlet/octet information exists at sizable R away from jets
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Constraining the SM EFT

Modifying pp — H

Bounds; USiNg i and e - socey to break degeneracy (3ab~)
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broken at high pr

: e Constraints with ML will be

better than global average

without Higgs by factor of ~ 2-3

00
Re(c,) +cui2

10/ 27



Plan

Introduction

Boosting H — bb with machine learning

» Method and architecture
» Tagging boosted Higgs
» Performance and projected constraints

Prospects for an all-hadronic W mass measurement

» General method
» Statistical uncertainties
» Systematic uncertainties

Concluding thoughts

10/ 27



Current state of my
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Previous measurements

Ami”) = +7+11 4+ 14 MeV

stat. +exp syst. + mod. syst.

Am{"19 — 154 + 25 MeV

4
Am ( 9 — 470 + 28 + 28 MeV ATLAS, [arXiv:1701.07240]
stat. + syst (+ FSD) also CDF, [arXiv:1203.0275]
ALEPH, [arXiv:hep-ex/060511] DO, [arXiv:1203.0293]
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The all-jet final state?
(HL)-LHC edition

et

hard? <— crazy?
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Signal and background

x10° M=83.062:0.023 GeV, X*/N=1.0

Events

300F
200

100

o 60 ‘0186ﬂ4*J;i56“ 126
Moot (GeV)
o W +jets, Z + jets, QCD multijets, ¢, single ¢
e MapGrarH with simple detector simulation tuned to current
ATLAS/CMS jet substructure performance

e Pseudodata corresponding to HL-LHC luminosity

14/ 27



Choice of tagger
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e Flatten background by decorrelating jet substructure
selection from m; [arXiv:1603.00027]

e Small effect on signal efficiency, better control of background
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Events

Extracting of W and Z mass peaks

x10° M=82.306£0.023 GeV, X/N=0.9 A m=10.97+0.048 GeV, X*/N=1.0

150

Events
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100 F
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pr > 500GeV,Nj=12% double b tag

e Enriched sample of Z bosons with double b tag
e Measure Amyz so that many experimental systematics cancel
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Statistical uncertainty

e Assume current detector performance and triggers
e Statistical precision for my

Selection Int. luminosity | omy [MeV] \
decorrelated N2~ 1%, pp > 500GeV | 300fb~—1 75
decorrelated N5 ='1%, py > 500 GeV | 3000 fb~1 23

e Statistical precision for Amyz
Selection Int. luminosity | om, [MeV]
decorrelated N5~ 2%, py > 500 GeV | 300fb—1 171
decorrelated N5 ='5%, py > 500 GeV | 3000 b1 48

> Limited by Z — bb cross section
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Where the LHC stands now

no double b tag
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Trigger strategy

e Current trigger threshold for
ATLAS/CMS pr 2 500 GeV

e Alternative approaches storing

lower size events at higher rates

allows going to pr = 200 GeV

e Assume substructure evaluated
at L1 or HLT level at HL-LHC

Trigger efficiency
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CMS, [arXiv:1806.00843]

Strategy Selection Int. luminosity | omy [MeV]
measure my decorrelated N§= 1%, pr > 500GeV | 3000fb~? 23
measure my decorrelated NSZ L 1%, pr > 400 GeV 3000fb~! 21
measure my decorrelated N§= 129, pr > 300GeV | 3000fb! 13
measure my — my decorrelated N2 =1 5%, pr > 500GeV | 3000fb~? 48
measure myz — my decorrelated N%Zl 5%, pr > 400 GeV 3000fb ! 40
decorrelated N5='5%, pr > 200 GeV | 3000fb~* 32

measure my — my

19/ 27



Systematic uncertainties
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Experimental uncertainties

e Assume particle-flow reconstruction, evaluating systematic
effects separately on charged particles, v (and 7°), and neutral
hadrons

e Estimate precision of energy scale calibration needed to
achieve Amy < 10 MeV

Effect Understanding needed | Typical current
for oy, = 10 MeV precision

Charged particle energy scale 0.03% 0.05%

Photon (and 7°) energy scale 0.06% 0.1%

Neutral hadron energy scale 0.1% 1%

200 pileup interactions 1.4% 1%

e Uncertainties cancel when measuring Amyy

> Residual effects from hadronization model affecting W — qg’ vs.
Z — bb jet response (more below)
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Normalized Distribution

Perturbative effects

0.25F
0.2F
0.151 Effect Size of effect Understanding needed
for omy = 10 MeV
o1 NLO QCD 8 Mev 7
NLO EW 1 MeV v
0.05F- NLO PDF 1 MeV v
Y NE=1 < 0.2 selection 200 MeV 5%
05 1 15 2
jetin|
pr > 300 GeV

e Prediction of W boson kinematics not a limiting factor in
hadronic final state

e Need prediction at 5 % level of how much substructure
selection changes my
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Nonperturbative effects

e Disabling non-perturbative effects (MPI and hadronization in
Pytuia8) to estimate size of effect on both my and Amyy

» 10 times smaller for Amyz than for mw

e Comparing Z — qg and Z — bb mass peaks to estimate size of
hadronization effects on Amyz

Quantity Effect Size of effect | Understanding needed
for omy = 10 MeV

my N5=T < 0.2 selection 310 MeV 3%

my non-pert. corrections 1100 MeV 0.9%

Amyz non-pert. corrections 110 MeV 9%

my, Z —qqvs.Z — bb 140 MeV 7%
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Where MC generators stand now

e Estimate current g T S
2 2 e 02 717 o)
understanding of convolution of Foisk ey
z )
perturbative and 3 .
nonperturbative effects by g
comparing Pytuia8 and 2005
Herwic++ , S
. . % 80 £ 100 110
e Depends on grooming algorithm M7 (GEV)

and substructure selection
e omhad ~ 200-1000 MeV

) 6m1‘}§‘zd ~ 50-500 MeV
o 5m&P ~ 50-500 MeV
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Where MC generators stand now

Estimate current
understanding of convolution of
perturbative and
nonperturbative effects by
comparing PyTaia8 and
Herwic++

Depends on grooming algorithm
and substructure selection

smhad ~ 200-1000 MeV

smbad ~ 50-500 MeV
sm&P ~ 50-500 MeV
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Where MC generators stand now

e Estimate current
understanding of convolution of
perturbative and
nonperturbative effects by
comparing Pyruia8 and
Herwic++

—— W, Pythia (78.878 GeV)
-+ W, Herwig (79.261 GeV)
Z, Pythia (89.236 GeV)
Z, Herwig (89.642 GeV)
—— Z - bb, Pythia (88.773 GeV)|
Z — bb, Herwig (88.838 GeV]
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Normalized Distribution
2 °
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80 % o iio
r. Softdrop (B=1) jet mass (GeV)

e Depends on grooming algorithm %
and substructure selection

e omhad ~ 200-1000 MeV

o ombad ~ 50-500 MeV
o OmbP ~ 50-500 MeV
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my, (GeV)

Constraining nonperturbative effects
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e Nonperturbative effects strongly reduced by substructure

selection and at high jet pp

e Pyruia—Herwic difference for Amyy reduced to 10-50 MeV at
pr > 500 GeV

¢ Differential measurement of Amy; vs. pr and substructure
promising to contain nonperturbative effects
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Discussion

e The leading theoretical task will be an extraction of
nonperturbative corrections, either from other data or
self-consistently with mass measurement itself

» W boson groomed N> and groomed mass (a color singlet)

» ¢f. groomed D [arXiv:1708.06760,1710.00014,1710.06859]
> ¢f. groomed m; [arXiv:1708.02586]

> A statement on universality of nonperturbative corrections for
hadronic W and Z decays

e Measurement of my peak interesting in itself, since it can
help to better understand hadronization of boosted W/Z
bosons, supporting searches

e HE-LHC would allow access to even higher pr with smaller
nonpertrubative effects
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Conclusions

e Using modern ML techniques high-pr H — bb is already on
the verge of od discovery
» Can soon be turned into measurement and precision constraint
opportunity
» Our two-stream NN approach suggests there is more
information in color flow waiting to be used
e Hadronic my measurement could avoid experimental
systematic uncertainties related to measurement of £, and
theoretical uncertainties related to mr
» Measurement of Amyz more feasible than my itself
> New trigger strategies needed to reach statistical uncertainty of
30 MeV with 3000 fb~! of HL-LHC data
» Measurement limited by the understanding of nonperturbative
contributions the the masses of W — ¢¢@’ and Z — bb

e In both cases, much work still to be done
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Thank you!



