Analisi $\pi \nu \nu$

Mauro Piccini, Tommaso Spadaro

INFN

Dove siamo: analisi dati 2016

Accettanza 2016

Accettanza PRIMA di applicare il "Box cut":

Accettanza DOPO l'apliccazione del "Box cut": ~2.8%

Box cut contro l'upstream background

Eventi con CDA alto e senza il CHANTI in veto

Dove andiamo: 2017 e 2018

Aumento di ~60% nell'intensità del fascio (atteso lieve peggioramento nel random veto)

- Un fattore circa 10 nel numero di burst acquisiti nel 2017 rispetto al 2016
 - Più giorni di presa dati
 - Miglior efficienza di acquisizione

Azioni contro l'upstream background

Contributi italiani all'analisi 2017/2018

Due tabelle dell'analysis coordinator Giuseppe Ruggiero all'ultimo meeting:

	2016	2017-18	
Intensity vs nominal	$30 \div 40\%$		
• $K - \pi$ efficiency	73 ÷ 75%		Kucerova, G.R.
• $K - \pi$ mis – ID	1% (3.5% no K)		"
• $\pi^+\pi^0$ yield / burst	150 ÷ 200		
Random Veto	24%		Corvino, Martellotti, Peruzzo, Velghe
Trigger efficiency	88%		Romano, Marchevski
• π^+ ID with calorimeters	77%		Aliberti, Petrov, Zamkovsky
• π^+ ID with RICH	80%		Brizioli, Volpe
• m_{miss}^2 tails $(\pi^+\pi^0)$	1.3×10^{-3}		Kucerova, Koval, G.R.
• m_{miss}^2 tails (K _{µ2})	0.25×10^{-3}		"
• π^0 Efficiency	2.5×10^{-8}		Corvino, Martellotti, Peruzzo, Velghe
• μ^+ Efficiency with calo.	0.5×10^{-5}		Aliberti, Petrov, Zamkovsky
• μ^+ Efficiency with RICH	2×10^{-3}		Brizioli, Volpe

14/09/2018

Contributi italiani all'analisi 2017/2018

Expectations from '17 – '18:

- Signal:
- $\pi^+\pi^0$ Background:
- K_{µ2} Background:
- Other background from K decays:
- Upstream background:

Schuchmann, Marchevski

Brizioli

Graham, Lollini

Limitandoci all'analisi $\pi\nu\nu$, molti altri contributi non evidenziati dalle precedenti tabelle su: prestazioni GTK, efficienza di trigger di L0, utilizzo del CHANTI.

Alcuni effetti favoriti dall'avvio del gruppo italiano di analisi sono visibili; si può fare di meglio