Physics cases under study

Search	Physics case	Analysers	Available POT, 10 ¹⁷	Comment
Exotic decays to $\mu\mu$	Dark photon, ALP fermionic, Dark Scalar	T. Spadaro , B. Dobrich, A. Kleimenova	~7.0 [2016/17/18]	Parasitic trg
Exotic decays to $\pi\mu$	HNL	L. lacobuzio [UK]	~2.2 [2016/17/18]	Parasitic trg
Exotic decays to charged particles	Dark photon, ALP fermionic, Dark Scalar, HNL	G. Lanfranchi	~0.25 [2017+2018]	Beam dump
Exotic decays to πe , ee	HNL		0.05 [2016]	Planned trg in 2018
$\pi^0 \rightarrow A'(inv) \gamma$	Dark photon invisible	T. Spadaro, M. Mirra	2016 data, trigger $\pi v v$	completed
ALP $\rightarrow \gamma\gamma$	Photon-coupled ALP	T. Spadaro , B. Dobrich	0.25 [2017+2018]	Beam dump
Relevant additional activity				
LKr trigger study	ALP->gg	BD, J. Jerhot	0.25 [2017+2018]	Beam dump
Beam G4 MC	All	M. Rosenthal	9 10 ¹² POT-equivalent	Beam dump

Obviously 2018 on-going: statistics of individual cases might change

Search for A' to invisible

- Analysis totally Italian
- Detect dark photons, feebly coupled to SM γ via: L = $\varepsilon A^{\mu\nu} F_{\mu\nu}$
- Produce dark photons from the decay chain: $K^+ \rightarrow \pi^+ \pi^0$, $\pi^0 \rightarrow A' \gamma$

$$BR\left(\pi^{0} \to A'\gamma\right) = 2\epsilon^{2} \left(1 - \frac{m_{A}^{2}}{m_{\pi^{0}}^{2}}\right)^{3} \times BR\left(\pi^{0} \to \gamma\gamma\right)$$

- Assume invisible decay of the A' (or extremely long-lived A')
 - Signature: one photon, missing mass peaking around the A' mass

2

Status of A' invisible searches

- Recent exclusion limits: NA64, Babar
- In future, expect results from Belle/Belle-II

Upper limit preliminary result

NA62 preliminary result: no signal observed, exclusion limit in an interesting region (10¹⁰ K⁺ decays from 2016)

Status: analysis completed

10¹¹ K⁺ decays from 2016 data (10¹⁰ in the fiducial volume)

Final internal review in progress

Paper to be submitted within 2018

Other promising exotic analyses: ALP

$$\mathcal{L}_{\text{axion}} = \mathcal{L}_{\text{SM}} + \mathcal{L}_{\text{DS}} + \frac{a}{4f_{\gamma}} F_{\mu\nu} \tilde{F}_{\mu\nu} + \frac{a}{4f_{G}} \text{Tr} G_{\mu\nu} \tilde{G}_{\mu\nu} + \frac{\partial_{\mu}a}{f_{l}} \sum_{\alpha} \bar{l}_{\alpha} \gamma_{\mu} \gamma_{5} l_{\alpha} + \frac{\partial_{\mu}a}{f_{q}} \sum_{\beta} \bar{q}_{\beta} \gamma_{\mu} \gamma_{5} q_{\beta}$$

- Minimal scenario with flavor-diagonal couplings to photons, quarks/leptons, gluons, etc.
- Three scenarios suggested [PBC definitions]:
 - **BC9**: Photon coupling dominance, parameters {m_a, g_{aγγ}}
 - **BC10**: Fermion dominance, parameters $\{m_a, 1/f_l, 1/f_q\}$, to simplify $f_l = f_q$
 - BC11: Gluon dominance, parameters {m_a, 1/f_G}

For **BC10**:

- Toy-MC's
- Acceptance included
- Provide curve for 10¹⁶, 10¹⁷, 10¹⁸ POT [NA62++]
- Zero background ass.

Data analysis in progress [$\mu\mu$]:

- ~2.5 10¹⁶ POT in beam dump mode [G. Lanfranchi]
- Up to $7x10^{17}$ POT in parasitic $\mu\mu$ trig [T. Spadaro, et al.]

Other promising exotic analyses: ALP

$$\mathcal{L}_{\text{axion}} = \mathcal{L}_{\text{SM}} + \mathcal{L}_{\text{DS}} + \frac{a}{4f_{\gamma}} F_{\mu\nu} \tilde{F}_{\mu\nu} + \frac{a}{4f_{G}} \text{Tr} G_{\mu\nu} \tilde{G}_{\mu\nu} + \frac{\partial_{\mu}a}{f_{l}} \sum_{\alpha} \bar{l}_{\alpha} \gamma_{\mu} \gamma_{5} l_{\alpha} + \frac{\partial_{\mu}a}{f_{q}} \sum_{\beta} \bar{q}_{\beta} \gamma_{\mu} \gamma_{5} q_{\beta}$$

- Minimal scenario with flavor-diagonal couplings to photons, quarks/leptons, gluons, etc.
- Three scenarios suggested:
 - **BC9**: Photon coupling dominance, parameters $\{m_a, g_{a\gamma\gamma}\}$
 - BC10: Fermion dominance, parameters $\{m_a, 1/f_1, 1/f_q\}$, to simplify $f_1 = f_q$
 - BC11: Gluon dominance, parameters {m_a, 1/f_G}

For **BC9**:

- Toy-MC cross checked with NA62MC
- Acceptance included
- Curve for 10¹⁸ POT [NA62++, landscape updated]
- Zero background ass.

Data analysis:

2.5x10¹⁶ POT beam dump [T. Spadaro, et al.]

Neutrino portal

$$\mathcal{L}_{\text{vector}} = \mathcal{L}_{\text{SM}} + \mathcal{L}_{\text{DS}} + \sum F_{\alpha I} (\bar{L}_{\alpha} H) N_{I}$$

- Neutrino portal, the DS Lagrangian can include both Dirac or Majorana types + expanding the H around the vev for the physical 125 GeV Higgs (h) and diagonalizing the mass matrix gives the mixing of v and N with a matrix U
- Three scenarios suggested [Gorbunov, Shaposhnikov, JHEP10 015(2017)]:
 - **BC6**: $U^2e : U^2\mu : U^2\tau = 52: 1: 1$, normal hierarchy of active neutrino masses
 - **BC7**: $U^2e : U^2\mu : U^2\tau = 1: 16 : 3.8$, normal hierarchy of active neutrino masses
 - **BC8**: $U^2e : U^2\mu : U^2\tau = 0.061: 1 : 4.3$, normal hierarchy of active neutrino masses

Projections from G. Lanfranchi:

- Toy-MC/NA62MC
- Curves for 10¹⁸ POT
- Zero background ass.

Data analysis in progress:

- ~2x10¹⁷ POT πµ parasitic [T. Spadaro, others]
- ~2x10¹⁶ POT beam dump [G. Lanfranchi]

The "Lepton Flavour WG"

$K^+ \rightarrow \pi^- e^+ e^+ / \pi^- \mu^+ \mu^+$	UK
$K^+ \rightarrow \pi^+ \mu^+ \mu^-$	UK, Prague
Κ⁺ → eνγ	IT (R. Piandani)/UK
K⁺ → e⁺νμ⁺μ⁻	IT (D. Soldi)
$K^+ \rightarrow \pi^+ \gamma \gamma$	UK
$K^+ \rightarrow e^+ v v v$	Louvain/JINR
К⁺ → πµе	Louvain/UK
$K^{\scriptscriptstyle +} ightarrow \mathrm{ev}$ / $K^{\scriptscriptstyle +} ightarrow \mu \mathrm{v}$	CERN
${ m K}^{\scriptscriptstyle +} ightarrow { m ev}$, ${ m K}^{\scriptscriptstyle +} ightarrow \mu u$	UK
Κ⁺ → πε∨γ	IT (F. Brizioli)
	$K^{+} \rightarrow \pi^{-}e^{+}e^{+} / \pi^{-}\mu^{+}\mu^{+}$ $K^{+} \rightarrow \pi^{+}\mu^{+}\mu^{-}$ $K^{+} \rightarrow e^{+}\nu\mu^{+}\mu^{-}$ $K^{+} \rightarrow e^{+}\nu\mu^{+}\mu^{-}$ $K^{+} \rightarrow e^{+}\nu\nu\nu$ $K^{+} \rightarrow e^{+}\nu\nu\nu$ $K^{+} \rightarrow e^{-}\nu\nu$ $K^{+} \rightarrow \mu\nu$ $K^{+} \rightarrow e\nu$ $K^{+} \rightarrow \mu\nu$ $K^{+} \rightarrow e\nu$

+ General contributions:

trigger efficiency (D. Soldi, et. al.), detector efficiency (all Italian subdetector groups) general analysis tools

Highlighted examples

Select >3000 K⁺ \rightarrow evy decays, background ~5% vs PDG value from 1000 evts (R. Piandani)

Select O(100) $K^+ \rightarrow ev \mu^+ \mu^-$ decays in 2017 data, % bkg vs PDG value with 30% error (D. Soldi)

Can improve by x3 on BR(K⁺ $\rightarrow \pi^0 e v \gamma$) and T-violation asymmetry wrt PDG (F. Brizioli)