KLOE-2 Status – Sblocchi SJ – Preventivi 2019

E. De Lucia LNF- INFN on behalf the KLOE-2 Collaboration

KLOE-2 Integrated Luminosity

KLOE-2 Run started in November 2014 and ended on March 30th 2018:
 6.8 (5.5) fb-1 delivered (acquired)

Daily record:13.7 (11.1) pb⁻¹ del. (acq) Peak Luminosity: 2.28x10³² cm⁻² s⁻¹

S fb⁻¹ Goal reached thanks to the combined effort of KLOE-2 & DAΦNE teams
 teams

KLOE-2 Achievements 2018 (I)

Dark Photon: update limit on $U \rightarrow \mu^+\mu^- \&$ combine $\mu+\mu-\gamma$ and $\pi+\pi-\gamma$ final states *Milestone 2018*

PLB 784 (2018)

- ♦ Updated limit on U \rightarrow µ+µ– with full KLOE statistics – L = 1.93 fb-1
- Combination of $\mu+\mu-\gamma$ and $\pi+\pi-\gamma$ final states [$\pi+\pi-\gamma$: PLB757(2016)356]
- $\epsilon < (6 1.94) \times 10^{-7}$ above 650 MeV

Combination of σ_{had} meas. and a_{μ} determination at $0.10 < s < 0.95 \text{ GeV}^2$

JHEP 1803(2018)173

 $K_{\rm S} \rightarrow \pi e v$ charge asymmetry (1.7 fb⁻¹ KLOE) Milestone 2018

JHEP 09 (2018) 21

KLOE-2 Achievements 2018 (II)

Direct test of T and CPT in neutral kaon transitions with KLOE data

Preliminary Result @ ICHEP 2018

4

KLOE-2 Achievements 2018 (II)

Direct test of T and CPT in neutral kaon transitions with KLOE data

Preliminary Result @ ICHEP 2018

KLOE-2 Achievements 2018 (III)

Leptophobic Dark Matter search with KLOE-2

Preliminary Result @ ICHEP 2018

KLOE-2 Data ongoing Analysis

- ◎ Analysis with KLOE-2 data:
 - $K_{\rm S} \rightarrow 3\pi0$
 - \odot $\eta \rightarrow \pi + \pi -$
 - $K_S \rightarrow \pi ev$
 - $K_{\rm S} \rightarrow \pi + \pi K_{\rm L} \rightarrow \pi + \pi -$
 - $\eta \rightarrow \pi 0 \gamma \gamma$
 - B-boson search in $\phi \rightarrow \eta \pi 0 \gamma$
- ΗΕΤ πΟ search: factor 2
 efficiency improvement with the new discriminators &
 Multivariate Analysis with data
 sample acquired in this new
 configuration

Exploiting presently ongoing data reconstruction & MC production

DBV-38 reconstruction

First stable reconstruction (DBV-38)

- New background filter
 ⇒ rejects 25-30 % of the events
- Version 3.0 of the DC-IT integrated tracking
- New stream for Single Photon Trigger events implemented
- Tests for a new stream for γγ physics events with HET
- Additional datarec and MC for HET & single photon trigger SPHOT streams and possible different reconstruction versions and contingency for other streams

Request 2019 – Tape 0.5 PB Erika De Lucia – Pre-CSN1 Meeting September 13th 2018

DBV-38 reconstruction rate

- 1.5 fb⁻¹ reconstructed with DBV-38 since March 21st, 2018
 - ⇒ \sim 30 % of the whole KLOE-2 data set ⇒ 2016 data set finished and starting 2017

- New background filter + reconstruction optimization
 ⇒ gain a factor of 2 in reconstruction rate:
 ~ 20 pb-1 / day
- At this rate the first round of all KLOE-2 data reconstruction will be completed in ~ 6 months
- 0.8 fb⁻¹ MC production on same period

Computing

- Migration of old servers managing old TSM library on new Power8 machine (May) reduction of 12 keuro out of 85 keuro Maintenance cost from 2018
- New Storewize 5030 Gen II Disk Array installed substituting old DS4800 DS5100 (online - users & group areas – VM boot - KLOE software) 200 TB additional reduction of 21 keuro Maintenance cost starting 2019
 - DataDirect 9900 (buffer area) 800 TB unfortunately 3 blocking failures starting 2018 (6 days in total) impact on offline activities only. Aged.
 - Referees willing to consider possible substitution, further reduce Maintenance

Storewize upgraded to replace DataDirect

	Maintenance				
	Server IBM	Storage & Network	Total Maintenance		
2015	22	20	42		
2016	22	52	74		
2017	22	48	70		
2018	17	56	73		
2019	0	35	35		
2020	0	35	35		

Request 2019 - Maintenance 35 keuro

Plans for KLOE-2 data (I)

- ◎ KLOE + KLOE-2 data sample: 8 fb⁻¹ \Rightarrow 2.4 × 10¹⁰ ϕ -meson produced, the largest sample ever collected at the $\phi(1020)$ peak
- I Last SC Findings & Recommendations: "The SC recommends that the KLOE-2 Collaboration prepares a plan for data preservation"
- CERN experts contacted through the LNF Director (Sünje Dallmeier-Tiessen and Salvatore Mele)
- The idea: "Data Preservation for KLOE would be an excellent test bed as the data set is not gigantic and the basic idea would be to have a Rootcompatible set of ntuples with reconstructed data."
- February 20th @LNF: First meeting with Sünje Dallmeier-Tiessen and KLOE-2 detector, offline, and computing experts
- First step: Change present DST Data output format to ROOT- compatible (with the assistance of experts: Axel Naumann & Federico Carminati)
- In First tests planned this summer Successfully produced first ROOTples
- Attend ROOT Users workshop, September in Sarajevo Met experts to discuss programming strategies and data output structure optimization

Plans for KLOE-2 data (II)

End 2018 – Beginnning of 2019:

Complete first round of KLOE-2 data reconstruction + production of ~ 1 fb⁻¹ of all_phys Monte Carlo

Immediately after:

Start a second round of data reconstruction, with an improved version of Datarec

Implement the ROOT output instead of the present DST format

Short-term plans for analysis

October 2018:

- \odot Preliminary results on the 5 prompt photon sample
 - $(\eta \rightarrow \pi^0 \gamma \gamma \text{ and B-Boson search})$ on old data *Milestone 2017 @* 40%
- End 2018:
 - $\gamma\gamma \rightarrow \pi^{0}$: analysis of the second sample of 500 pb⁻¹, Bhabha cross-section measurement at very low angle with HET
 - $K_s \rightarrow 3\pi^0$: preliminary result on KLOE-2 data *Milestone 2018*
 - $\varphi \rightarrow K_S K_L \rightarrow \pi^+ \pi^- \pi^+ \pi^-$: update with KLOE-2 data *Milestone 2018*
 - T, CPT tests with $\phi \rightarrow K_S K_L \rightarrow 3\pi^0 \pi e_V$, $\pi\pi\pi e_V$: update of the analysis with KLOE data *Milestone 2018*

Beginning of 2019:

- $K_s \rightarrow \pi e_V$: update of the analysis of KLOE-2 data
- \circ η → π⁺π⁻: preliminary result on old data + first look at KLOE-2 data

Preventivi 2019

KLOE-2 Financial Plan 2019

	Missioni (keuro)	Consumo	Altro Consumo	Manutenzi oni	Apparato	Totale (keuro)
2019 Previsione	38 (**)	38.5	2	35 (*)	5	118.5
2018 Assegnato	68.5	55.5	27	73	42	266.0

Estimates are based on 2018 money assignments and updated FTE 15.7 (23.2)

- Missioni: (**) Includes indiviso missioni as 2018 x FTE(2019)/FTE(2018)
- Consumo: includes 13 keuro (+ 1.5 SJ) for 0.5 PB of cassettes (2018 price) Additional datarec and MC for HET & single photon trigger SPHOT streams, considering also possible different reconstruction versions for these streams together with some contingency for other streams
- Altro Consumo: Maintenance for HETs measurement of DAFNE luminosity
- Manutenzioni: (*) Major decrease wrt 2018 due to latest Storewize upgrade to replace DataDirect with very expensive maintenance & library servers replaced
- Apparato: 5 keuro as in 2018 for eventual Sostituzioni non in manutenzione

Proposta Milestones 2019

Descrizione	Data completamento	
Implementazione del ROOT data output	30-06-2019	
Aggiornamento fisica gamma-gamma con 500 pb-1 acquisiti con i nuovi discriminatori e con nuova selezione degli eventi	31-07-2019	
Risultati preliminari decadimento eta -> pi+pi- con 1 fb-1 (dati KLOE-2)	31-07-2019	
Studi su decadimenti semileptonici del Ks con 1 fb-1 di dati di KLOE-2	31-12-2019	
Ricerca di B-boson con 1 fb-1 di dati di KLOE-2	31-10-2019	

Conclusions

- Data taking campaign Completed
- © Several analysis on KLOE-2 data ongoing
- Towards Data Preservation: first ROOT data output produced & discussed with experts strategies and data output optimization
 On track with Milestones 2018

SPARES

Data preservation

•Data output in the from of ROOT TTree:

- .FORTRAN wrap of C++ / ROOT code
- Implementation on the standard KLOE reconstruction framework
- Basic code / output already done
- •Time to reproduce all the data banks/ HBOOK structure: complexity of the code = complexity of the wrap and FORTRAN / ROOT interaction
- September 2018: Meeting with ROOT experts to discuss programming strategies and data output structure optimization

Comparison of HBOOK and ROOT output

