

The ISOLPHARM approach for parallelizing FLUKA and Geant4

Lisa Zangrando

The ISOLPHARM project

• ISOLPHARM is an INFN project devoted to the discovery and development of high purity radiopharmaceuticals which are drugs delivering a *radionuclide* to a specific cancer cell allowing diagnostic or therapeutic procedures

- In particular ISOLPHARM_Ag is studying the promising silver isotope (111Ag)
- Radionuclides will be produced by using the SPES facility (synchrotron) at INFN-LNL

The production target

The computing needs

- It is extremely important to study the behavior of the production target
- We need to predict the production and release of 111Ag from the primary target
- We achieve it by executing Monte Carlo simulations based on
 - FLUKA: to simulate the production inside the primary target
 - Geant4: to simulate the diffusion and effusion processes
- An IT infrastructure has been designed to meet the project computing needs:
 - Common distributed environment for executing FLUKA and Geant4 simulations
 - both of them are computing intensive and must be parallelized
 - Web based portal to allow users to:
 - create, submit and control their simulations
 - collect, view and analyze the produced data

Geant4 vs FLUKA

	Geant4	FLUKA	
Multi-core CPU	multithreading	no multithreading one FLUKA instance per core	
Distributed computing (extra setup needed)	ParGeant4 (MPI)	HTC cluster (i.e. HTCondor)	
deployment	Docker	Docker	

Toward a common approach

- Since FLUKA and Geant4 are containerized (Docker) applications
 - small, fast and portable runtime environments
 - use the OS-level virtualization
 - isolated from each other and from the host
 - microservice architecture
- their natural execution environment is a distributed platform (cluster) managed by a container **orchestrator** as Apache Mesos, Docker swarm, **Kubernetes**
 - open-source systems that manage large computing cluster
 - main features: automating deployment, auto-scaling, high availability, monitoring and management of containerized applications (i.e. orchestration).
- Kubernetes has been designed by Google and is the standard de facto

The ISOLPHARM approach

- A Monte Carlo simulation is composed of a set of FLUKA or Geant4 docker instances running on a Kubernetes cluster
- More than one simulation can be executed at the same time
- all docker instances of the same simulation share:
 - the same input data
 - a countdown, an integer which indicates the overall number of runs/cycles to be done
- whenever an instance executes a new run it:
 - · decrements the countdown by 1
 - generates a new random seed number
- as soon as the counter becomes zero, all related instances are automatically deleted and the partial files are merged and transferred to the storage

The computing architecture

Simulation input parameters

- Setting up a simulation is a very complex and error prone task
- The complexity increases if you consider that FLUKA and Geant4 have different input/output file formats
 - a standard would be appreciated
- To simplify the simulation set-up for normal (i.e. not advanced) users or scripts, we defined a set of abstract input parameters and specific simulation templates for FLUKA and Geant4
- A generator running inside the docker instance will apply such parameters to the proper template for generating the input file

Parameters					Production simulation		Release simulation
Topic	Parame	ter name	Variable Type	Unif of Measure	FLUKA	Standard G4	Custom G4
Target	Target material	Material type	string	-	Yes	Yes	Yes
		Target density	double	g/cm3	Yes	Yes	Yes
	Target te	mperature	array <double>{disk number}</double>	℃	No	No	Yes
		Disk number	int	-	Yes	Yes	Yes
		Disk position	array <double>{disk number}</double>	m	Yes	Yes	Yes
	Target geometry	Disk radius	double	am	Yes	Yes	Yes
	lagergeomery	Disk thickness	array <double>{disk number}</double>	am	Yes	Yes	Yes
		Target box init	double	am	Yes	Yes	Yes
		Target box end	double	am	Yes	Yes	Yes
	Particle	e (beam)	string	-	Yes	Yes	No
	Ene	ergy	double	MeV	Yes	Yes	No
	Beam center pos	sition (horizontal)	double	am	Yes	Yes	No
		osition (vertical)	double	am	Yes	Yes	No
Beam	beamposition	n rms horizontal	double	m	Yes	Yes	No
	beam position	on rms vertical	double	am	Yes	Yes	No
	beam divergend	ce rms horizontal	double	mrad	Yes	Yes	No
	beam diverger	nce rms vertical	double	mrad	Yes	Yes	No
	beam	current	double	mA	Yes	Yes	No
Yelds	Radioactive partide input fle		string	-	No	No	Yes
	Phys	icslist	string	-	No	Yes	Yes
Other	Pred	cision	double	-	Yes	Yes	Yes
	Random generator seeds		array∢int>[2]	-	Yes	Yes	Yes

Expert users can still use their input files accessible by a URL

The security

- Kubernetes supports several AuthN technologies (OIDC, SAML, Keystone, etc)
 - OIDC: Google, Facebook, Microsoft, etc
 - Keystone: OpenStack
- AuthZ based on Kubernetes RBAC (Role-Based Access Control)
 - local policies: tested

The full computing architecture

- 1) A user submits a simulation job through the Web Portal or CLI
- 2) Security: AuthN / AuthZ
- 3) LB forwards the job to Synergy (3 replicas in HA)
- 4) Synergy validates the user job request, creates the countdown in Redis
- 5) Synergy creates a new parallel job (FLUKA or Geant4 docker instances) in Kubernetes
- 6) Each instance generates its input file and decrement the coundown by 1 at each run/cycles
- 7) The output files produced by the task execution are stored into a S3 storage cluster

Monitoring with Prometheus

- Prometheus is an open source toolkit to monitor and alert, inspired by Google Borg Monitor
- Great solution to monitor a Kubernetes infrastructure and applications
- It has support for instrument applications (e.g. Python, Java, GO, etc)
 - custom metrics
- Instrumented our FLUKA docker image in order to publish the progress state
 - by parsing the FLUKA logs into the temp dir
- we are able to see the overall simulation state graphically shown as an histogram into the Grafana dashboard.

The Web portal

We are developing a Web portal based on WordPress, an open-source Content Management System (CMS) for publishing Web content

Implemented first prototype for graphically display the Geant4 and FLUKA simulation results (e.g. particles productions) mapped on the nuclides chart

The Web portal: the Nuclides Chart

Several view modes: by half life, particles, current (FC)

The Web portal: the Nuclides Chart

- The chart shows the detailed data about the produced nuclides
 - It is zoomable

Kubernetes deployment

- we provide an automatic deployment system based on Ansible which is able create clusters on demand on:
 - OpenStack based Clouds
 - bare metal resources or VMs created on Cloud Providers other than OpenStack
- basic topology: one master and at least two nodes
 - https://github.com/zangrand/ansible-k8s
- the full Kubernetes cluster will be automatically provided in minutes
 - monitoring (Prometheus), dashboards (legacy, Grafana, etc), Big Data (Spark Operator)
- Kubernetes deployment in HA: on going
- horizontal cluster autoscaling is under investigation
 - the ability of the cluster to enlarge/shrink by itself as needed
 - speed up the simulation execution

The status

- Overall architecture validated
 - · building block for Big Data analytics
- Synergy (fronted) development: on going
 - a different approach to be evaluated: implementing as Kubernetes operator (native API)
- FLUKA and Geant4:
 - docker images: available
 - common set of input parameters: available
 - simulation templates: FLUKA done, Geant4 on-going
 - monitoring for FLUKA: available
 - monitoring for Geant4: under investigation
- Storage: S3 support in Ceph: to be finalized
- Kubernetes deployment with Ansible: available
- Web Portal based on WordPress: just evaluated
 - it would be nice to port Flair in WordPress
- data analysis tools
 - first prototype of Nuclides chart to be ported in WordPress (common dataset to be defined)
 - some others to be implemented

Questions?

