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Caveats for this chapter:

presented in
historical order; some of the results
are incomplete, e.g. heavy flavors
are only mentioned in next §;

* |arge overlap with [FNSN1, MQR, IE].




Quantum numbers : the Mendeleev way

® Many hadrons exist, with different
guantum numbers (qg.n.).

® Regularities (appear to) exist for some
g.n. (spin, parity, ...).
® Other g.n., like mass, are much more

o an example from
Intriguing. : many years ago
® A natural approach (a la D.I.M.): - [+ antiparticles...]

> investigate in detail the q.n.;

L the proliferation of

Ditri Ivanow Mendéleev hadrons started in
> the dynamics will actually follow. (Amitpyit Usarosuy Menpenées) the '50s — now they

> look for regularities;

are few hundreds ...

Name | m® | KF| KO | n P n A [ 250 A
Mass (Mev)| 140 | 135 | 494 | 498 | 548 | 938 | 940 |1116|1190|1232
Charge +1 | 0 |1 | 0| 0| 1| 0| 0 [+1,0]2+1,0]MaNY

other
Parity - — — - — + + + + * | hadrons
Baryonn. | O 0 0 0 0 1 1 1 1 1
Spin 0 0 0 0 0 Iz % iz V2 3/,
other g.n. ...
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Quantum numbers : parity P -+

¢ Definition : P |\|!(X,t)> =P | \|!(—X,t)>. for complete definitions and discussion, [FNSN1], [MQR], [BJ].
[W and Z do NOT conserve parity in

* Particles at rest (= in their own ref.sys.) their interactions, so their intrinsic

are parity eigenstates.

parity is not defined].

° Thglr eigenvalue (+ 1) is their intrinsic | For a many-body system, P is a
parity P. multiplicative guantum number :

®* From Dirac equation, for spin % Py(xy,Xy,...,X 1) =
fermions, P(antiparticle) = -P(particle). = P,P,..P W(Xy,Xy, .., X, t)

* By convention, quarks and leptons are | e Particles in a well-defined state of
defined with P=+1: orbital angular momentum are parity
P._=P,_=P_=P,=Py;=P =.. =+l eigenstates :

* Therefore Yim(0,0) = (=1)* Y, ,.(n—0,¢+7)

P, =P, =P, =P;=Py=P = .. = ® Therefore, for a two- or a three-
1. particle system

®* From field theory, for spin-0 bosons Pysiiz) = PiP3 (-1); . N
P(antiparticle) = +P(particle) : Poys123)= P1P,P3(—1)2. . Ly :
P,=P.=P_,etc : ® L

®* From gauge theories : L _©®

1/2 \ . 3)
P,=P,=-1. o
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Quantum numbers : Charge conjugation C .-

* The definition of C is to change a particle  ® Only particles (like n° unlike the K’s)

into its respective antiparticle, leaving which are their own antiparticles, are
untouched the space and time variables : eigenstates of C :
C |a,y(x,t)>=C|a, y(x,t)>. C=+1form% n,n’;

® Therefore, under C: C=-1forp° o, ¢;
charge g — =G C =—1for y [for Z, C and P are not defined].
baryonn.B  — -B; e E.g., use C-conservation in e.-m.
leptonn. L —-L; interactions for the following prediction :
strang. S — =S; 0 _ _
bosition ¥ 5% wm—>yy +1->(-1)(-1) ok;
momentum p — D; ™ —>yyy 1 +1—>(-1) (-1) (-1) no.
spin s — S. Br(n® — yyy) measured to be ~1078,

® C is hermitian; its eigenvalues™ are %1;
they are multiplicatively conserved in
strong and e.-m. interactions.

* see next slides.

®* However, almost NO particle is an
eigenstate of C; e.g.

C|nt>==|n>.
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Quantum numbers : G-parity G

proposed by Lee and Yang, 1956.
® charge conjugation C is defined as ® (@-parity is multiplicative :
Cl|Q,B,L,S>=+|-Q, -B, -L, -S >; G |nmtt mm kn®> =
* therefore, only states Q=B =L=S=0 = (=) [nt ma k>,
may be C eigenstates (e.g. ©°% 1, v, G |qg> = ()" [qG>;

[m*n]); * Gis a useful quantum number :
* useful generalization [G-parity] : > (-parity is conserved in strong
G=CR,; interactions (C and isospin are valid);
where R, = exp (-imt,) is a rotation in > it produces selection rules (e.g. a
the isospin space; decay in odd/even number of «'s is
e remember - allowed/forbidden).
C |nt> =—|nF>; ° e.g. ®(782)is I°(JP¢)=0-(1"):
C |n% =+ |nO; BR (w0 —> wtnn®) =(89.2+0.7)%
R, [1, 15> = (=)"3 |1, —13>; BR(w —>7w'n") =( 1.5£0.1)%
R, |n*> =+ |n>; opposite to the obvious phase-space
R, |70 =— |n0>; predictions (more room for 2w than 3=
decay).

® therefore, e.g.

G |n*% =CR, |t = — |g%0>
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Quantum numbers : demonstrations uj

* Be |N, x, o> the state, where ® P(y) =—1 [from Maxwell equations];
> N : the “charges” (electric, baryon /
lepton numbers, ...); ®* For a gq (or particle-antiparticle) state,
>X: the space vectors (position, which is also a C eigenstate,, C=+S P :
momentum, ...); SPC |nxo, -n-x-c>=
> o : the axial vectors (spin). =CSP|-nx0, n-x-c>=
=CS |-n,-x,G, n,x,-c>=
® Obviously, from their definition : = C |-n,-X,-G, N,X,5> =
C=P>=§*=1; =C |n,x,c, -n,-x,-c>.
Ct=C;P1=P;$1=§; SSPC=C=+1;
[where S is the spin-flip operator]. > C=4+S1P1=4SP. (qg.e.d.)

®* see also [FNSN1, 87]
® C hasreal eigenvalues, C==11 :

C |N, x,5>=C N, x, o>;

C? IN,x,0>=1|N, x,6>=C? |N, X, 6>;
C2=1—>C=+1.

(same for P, §, G, T).
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Hadrons : “elementary” or composite ?

too many hadronic resonances :

the figure shows the particle discoveries from 1898 to
the '60s; their abundance and regularity, as a function
of quantum numbers like charge and strangeness,
were suggesting a possible regularity, similar to the
Mendeleev table [FNSN1].
* \

1890 1900 1910 1920
I | N I T N I N | |$| I | N I N N NN I A | I | N I TN N I I I | + I
e P
1920 1930 1940 1950
I | N I N N NN I A | I | I N N I N N | I | N I N N NN I A | I
£ £4
n e ut nt K*
1950 1960
I | | 1 1 | | 1 1 1 I 1 1 | | | |
ELMEIEINEYY
O A%E PV, ZA° p v, a, and many more
KO AZ- h 2 o¢n
N fQ

. J
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Hadrons : “elementary” or composite ?

PHYSICAL REVIEW

A journal of experimental and theoretical physics established by E. L. Nichols in 1893

Seconp Series, Vor. 76, No. 12 DECEMBER 15, 1949 1949 : E.Fermi and C.N Yang

, proposed that ALL the
Are Mesons Elementary Particles?
resonances were
E. FerMr axp C. N. Yanc*

Institute for Nuclear Studies, University of Chicago, Chicago, Illinois bou N d State p_n
(Received August 24, 1949)

csons may be composite particles formed by the association of a nucleon with
extremely crude discussion of the ‘model it appears that such a meson /

O es similar to those of the meson of the Yukawa theory.
—J
Chen-Ning Yang Shoiki Sakata
Enrico Fermi (RT - IGIRE, (RE &—

Ydng Zhennmg) Sakata Shoichi)

1956 : Sakata extended the Fermi-
Yang model including the A,
to account for strangeness :
all hadronic states were then
composed by (p, n, A) and
their antiparticles.
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Hadrons : elementary or composite ?

1961 : M. Gell-Mann and Y. Ne’eman (independently) proposed a new classification, the
Eightfold Way, based on the symmetry group SU(3). The classification did NOT
explicitly mention an internal structure. The name was invented by Gell-Mann
and comes from the “eight commandments” of the Buddhism.

Murray

Gell-Mann

Yuval Ne'eman
(7281 52v)

Warning :

"t" is a quark, not a

¥

The Quark ldea
(up, down, strange)
1960 1970 1980
I 1 1 1 1 1 1 1 1 1 I 1 1 1 1 ++f$ fff + 1 1 1 1 1 1 ‘
JytDY An.B Wiz
top WIIXC YIII ZC 25
1990 2000 v -
I | 1 1 | | | 1 1 | ! | 1 1 | | L.....
B, t Many more hadrons
L_A/b have been discovered.

hadron (in modern language).
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The Eightfold Way (1961-1964)

All hadrons are classified in the plane (I; — YY),
(Y = strong hypercharge), where

I; =1, = third component of isospin; vyt Q=0 Q=+1

Y=B+S [baryon number + strangeness]. +1 7T

The strangeness S, which contributes to Y, had
the effect to enlarge the isospin symmetry 07
group SU(2) to the larger SU(3): Special
Unitarity group, with dimension=3.

The Gell-Mann — Nishijima formula (1956) is :

Q= I3 + 1/2(B+S) including heavy flavors [B:baryon, B":bottom] :

Q = I; + %(B+S+C+B’+T)

This symmetry is now called “flavor SU(3) [SU(3);]”, to distinguish it from the “color SU(3) [SU(3).]",
which is the exact symmetry of the strong interactions QCD (see later).
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The Eightfold Way (1961-1964)

The particles form the multiplets of SU(3);; each multiplet
contains particles that must have the same spin and intrinsic - N
parity. The basic multiplicity for mesons is nine (3%x3), which Wy

splits in two SU(3) multiplets: (octet + singlet). Instead, for o KooK wesosiar
baryons we have both octects and decuplets (see later in this J -.f“ M-140 (m
cha pte r) . A1 - K ‘\“-{L 495 Mel’

o
I

The gestation of SU(3) was long and difficult. It was a triumph S R
because it both explained the multiplets of known P -
particles/resonances, and (more exciting) predicted new \ J

particles/resonances, before they were actually discovered .

However, proton and neutron (or n* and ©°) have nearly identical mass. Therefore, while
the isospin symmetry SU(2) is almost exact, the symmetry SU(3),, grouping together
strange and non-strange particles, appears to be substantially violated.

In principle, in a similar way, the discovery of heavier flavors could be interpreted with
higher groups (e.g. SU(4) to incorporate charm, and so on). However, these higher
symmetries are broken even more, as demonstrated by the mass values. Therefore,
SU(6); for all known mesons J? = 0~ is (almost) never used.

Paolo Bagnaia - FNSN2 - 01 12




The Eightfold Way (1961-1964)

Few other multiplets :

-0 N et
Ak K* K* M~390 MeV
r ) :
VI=S] | _ .
1+ K, oK M~495 MeV’ o p P M-770(p). ~780 (. ~1020 (9 MeV
o = \'ﬂ:‘ M-140(m N ‘
-1k “"-.:\;z 495 MeV’ -1 K* ™%, . T{*- ‘\:‘fs R0 Me¥.

. . . LY *
. Y . . b Al
{2:- 1 ‘_Q:(} \\9:—1 . : _ . X . ‘
i B S N TR N Q"I Q=0 \\Q--l
-1 0 1 L o r = *\

\ y | I I O I
0 1

‘Iz

Meson resonances JP = 1°
(all discovered by 1961).

[Mesons JP = 0]
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Other multiplets :

/v

[=B+S]

s

\Q=0

M~939 MeV

X" M-1193 MeV () and ~1116 MeV (A)

“ M~ 1318 MeV

s

\
~
»O=+
Q=1
b
~
A

A
3

Iz

Octet of spin % baryons
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The Eightfold Way (1961-1964)

Other multiplets :

vy )
[=B+S]| A A" A A
= M~1232 MeV (1950s)
-1 M~1385 MeV (1961)
A = esssess . M~1533 MeV (1962)
-3 [ ?? ‘\\ \‘\
[ | | |'QF1 |'Q%0 “Q=+1
\_ 1 0 1 I y

Decuplet of spin 3/, baryon resonances
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Baryon resonances (3/,)*

As shown, these resonances exhibit a symmetry
respect to the isospin I; and hypercharge Y.

Therefore, a new multiplet with A* X* =* with S =0,
—1,-2 and a new resonance with S = —3 must exist.

The particle, called Q-, predicted () in 1962, was
discovered in 1964 by N.Samios et al., using the 80-
inch hydrogen bubble chamber at Brogkhaven (Fig.).

The Q-, having S = -3, can only decay wegkly () :
Q >=07; 5>E70; 5> AK;
1,-=0.82 x 100,

(*) Since even the electromagnetic interactions conserve the
strangeness, no electromagnetic decay would be possible;
the simplest non-weak S-conserving decay is :

Q- — A°KOK-,
which is impossible, because
m(€2) = 1700 MeV < m(A) + 2 m(K) = 2100 MeV.

Therefore the (2~ must decay via strangeness-violating weak
interactions : the Q™ is NOT a resonance.

Paolo Bagnaia - FNSN2 - 01

From a 1962 report:

Discovery of Z* resonance with mass ~1530
MeV is announced [...].

Gell-Mann and Ne’eman [..] predicted a
new particle and wrote down all its
properties:

* Name = 2~ (Omega because this particle
is the last in the decuplet);

e Mass ~ 1680 MeV (the masses of A, Z*
and Z* are about equidistant ~150 MeV);

* Charge =-1;
e Spin=3/2;
* Strangeness = —3;

e Lifetime ~ 1010 s, because of its weak
decay, since strong decay is forbidden(*);

* Decay modes: Z° - and = n%;

* Isospin = 0 (no charge-partners of similar
mass).

16




Baryon resonances (3/,)*

K-+ p —> Q + K"+ KO

LEO + 1~ (AS = 1 weak decay)

Lno +A(AS=1w.d.)
Ln— + p(AS=1w.d.)

v+ v (e.m. decay)

Lee

Brookhaven National Laboratory 80-inch hydrogen bubble chamber - 1964 Nick Samios
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The static quark model

A deeper understanding of SU(3) and its success in
describing the properties of hadrons was achieved
in 1964, when M. Gell-Mann and G. Zweig
proposed independently the hypothesis that all
the hadrons are composed of three basic
constituents, that Gell-Mann called™*) quarks. t—

This model, enriched by both extensions (e.g. new
quarks) and dynamics (e.g. electroweak
interactions and QCD) is still the basic constituent
of our understanding of the elementary particles,
the Standard Model.

In_this chapter we consider only the static part, in 1969 - Gell-Mann is awarded Nobel Prize
the world of the ’50s and ’60s. Sometimes, in the “for his contributions and discoveries

literature, it is referred as the naive quark model. SOMETIIY e EEESISEICT B CLEmEE Y
\partlcles and their interactions”.

J
(*) The name so whimsical was taken from the (now) However, at that time, it was not at all
famous quote "Three quarks for Muster Mark", from clear whether all that was just “a
James Joyce's novel "Finnegans Wake". mathematical convenience”, or reality.
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The static quark model

today also ¢, b, t have been discovered !!!

In this schema :
e there exists three quarks u, d, and s (up, down, strange);

e quarks are fermions with spin % and fractional charge

(1%, £%); u d S
e the baryons are made from three quarks (e.g. uds, uud); B baryon s s s
e the mesons from quark-antiquark pairs (e.g ud, ud, su); J  spin yA 2 Iz
| isospin Y5 Y5 0
* Therefore, according to the Dirac theory : I, 3<isospin| % | —% | 0
e charged-conjugate states exists, called antiquarks, which B 0 0 | —1
are the quarks antiparticles with opposite charges; '
. : _ Y B+S I Bo| =%
e the antibaryons are made of three antiquarks (e.g aud);
« The antimesons are made from an “antiquark-quark” | Q li+%Y | | =
pair (i.e. the mesons are their own antiparticles).
4 N\
The three quarks form a triplet, which is a basic d u 3
representation of the group. Quarks may be represented in Y § A
a vector shape in the plane I; / Y; then their combinations 4 L 7 g
are the sums of such vectors. L l )
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Rules :

) ) d u
* in the space I, / Y, sum “vectors” (i.e. add quarks| "~ |, or the

corresponding antiquarks) to produce “states”; J
* all the combinations are allowed.

¥

v Ay

e the pseudoscalar mesons (J°=0") are qg states in s-wave with
opposite spins (T4 ).




Graphical construction of the mesons

More specifically, with s-wave (J?¢=07), Notice that % 1, n’ are combinations
we get the “pseudoscalar” nonet : (mixing) of the three possible qg states
(see later for the mixing parameters) :

s N e R
Y A Y A dYU
ds us KO K* S
+1 T +1 1
\ /
da ud +dd +ss ud
0 ‘ 0 T ” mt
TL'O, T]O, n'
-1 1 C
st sd K- KO
1 0 +1 | -1 0 +1 |
N 3 \_ 3
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Graphical construction of the mesons

In addition, with JP¢ = 1= (i.e. spin T 1),

the “vector” nonet :

e ‘ I
Y A
ds us
+1 1
\ /
di .\uﬁ +dd + s?/ ud
0 —)
-1
su sd
1 1,
\ I /

Paolo Bagnaia - FNSN2 - 01

Notice that p°, ®, ¢ are combinations
(mixing) of the three possible qg states :

v )
K*0 K+ s
+1 1t
0 ® p*
%, @, ¢
_1 C
K™ K0
0 +1 I'
\ 3/

22
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Meson quantum numbers : JPC
e Parity : the quarks and the antiquarks e therefore, C is the product :
have opposite P : P=(—1)&1;
Poa = P1P, (1) = -1 (-1)¢ = (-1)**2. S = (—1)5*L; (Pauli principle, [BJ, 263])
C=PxS==(-1)¥s,
e Charge conjugation : for mesons, which
are also C eigenstates, C = PPS, parity
followed by spin swap (see before).
s N [ D
(o3 C toq S(MU-UNY, B (M Un);
‘ > ‘ \\/—( )j \ \/_( ) ,
Y Y
bo o bo 5 L S=0 S=1 )
X
™ N
®3 (swap spins of
L q and q) )

Paolo Bagnaia - FNSN2 - 01

23




Meson quantum numbers : multiplets

® For the lowest state nonets, these are  ® method (mainly bubble chambers) :

the quantum numbers :
> measure (tons of) events; e.g. :

L[S | JPC | 2L, | I=1state pp —> "t o
0 o O 1S, 7(140) > look for “peaks” in final state
i + +— 0).
1] 1-- 35 0(770) combined mass, e.g. m(nt* t~ n);
o 1*+— | P, | by(1235) > the peaks are associated with high
0++ 3p. | ay(1450) mass re§onanc§s, decaying via strong
1 interactions (width — I'" — strength);
1] 1+ | 3P, | a,(1260)
S++ | 3p 1320 > the scattering properties (e.g. the
2 | 3l ) angular distribution) identify the

: _ guantum numbers;
® all these multiplets have the main q.n.

n=1: ® result : an overall consistent picture;
4

* as of today ~20 meson multiplets have  ® Great success !!!
been (partially) discovered [PDG].

® important activity from the '50 to the
’70; still some addict;
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Meson quantum numbers : p° /5> non°

p® — non0|is forbidden ?
a) C-parity
C(p®) =-1; C(w%) = +1

therefore, since the initial
state is a C-eigenstate,

-1 =(+1) x (+1) ?2?22? NO

NB. A general rule : "a vector
cannot decay into two equal
(pseudo-)scalars”.

But (a) and (b) do not hold
for weak decays. Instead (c)

is due to spin-statistics and
angular momentum
conservation, which holds
for all interactions.

Z 4> HH is also forbidden.

b) Clebsch-Gordan coeff. in

isospin space

|1p%) =11=1, |3=O>}
|n% =11, 0);

therefore the decay is

(TCOTCO|pO> = <j1j2m1m2|-] M) =
=(1100|10)=0;

i.e. it does NOT happen.

[PDG, § 44 :
1
101
0
0 0 0 |

+

c) Spin-statistics

(see [Povh, 199,374])

L 1 ¢
S 1 0 0 s a'e
1 1 T.f

pis a boson —
wave function symmetric;

the n%'s are two equal
bosons —»

space wave function
symmetric;

L=1 makes the function
anti-symmetric —

no.
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Meson mixing

mesons | 90| T [ U] b S |G| ey | ot

/m°\r | ud, q§?,da |0+ | 1 |1,0,-1| O |1,0,-1| 140 )
n qg? 0o+ | 0 0 0 0 550 e
n qg? 0o+ | 0 0 0 0 960 )
K*, KO ds, us O | % | %% |+1]| 1,0 | 495

KO, K- s, sd o | % | %-%|-1| 0-1 | 495

oY/ p\p~ |ud, q§®,da|1-| 1 |1,0,-1| 0 |1,0,-1| 770 | ©
® qg® 1--| 0 0 0 0 780 )
b qg® 1--| 0 0 0 0 1020 | @

K*+, K*O ds, us - | % | %% |+1| 1,0 | 890

K*0, K*- sd, sd 1- | % | %-% |-1] 0,-1 | 890

Notes :

(1) P=(-)¥*1 > P=—; C=(-)%s — C=(—)5 [only when C eigenstates]; Q = I;+7%Y;(B=0) > Q=1/;+2S;
(2) The mesons 7% 1, n’" are mixing of ud ® dd @ ss, but essentially 70 is only ut @ dd (see next);
e mesons p°, ®, ¢ are mixing of ud ss, but essentially ¢ is only s5 (see next).

(3) Th 0 ixi fui ®@dd®ss, b ially ¢ i ly ss ( )
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Meson mixing: 0~ and 1~ af=

Mesons are bound states qg. Consider only

uds quarks (+ Gds) in the nonets (JP =017, ( _ ) )
the pseudo-scalar and vector nonets) : . [oct,1=1]=(uu—dd)/~2
— - — \Vmu i
 the states (ud, us, da, ds, sa, sd) have no Wgoloct,I=0)=(uu +dd_255)/\/€> ide:l Icase
ambiguity : (K%, K%, %); v, [sing]= (Ut +dd +s5)/~/3

e but (ub dd ss) have the same quantum
numbers and the three states (yg, Ys, . o 1
;) mix together (— 2 angles per nonet); n(140)~ yg, =(uu _dd)/\/E rF=0,

Nn(550) = yg,cosB, —y;"sinb,; g

* the physical particles (7° 1, n’ for 0-, p°, o . pseudo— = —25°;
®, ¢ for 17) are linear combinations qg; N'(960) =g, sind  +y; COSGps) scalar
* (yg,) decuples (n° p°) (— 1 angle only);
* 0,5 and 6, are computed from the mass p°(770) = vy, = (ut—dd)/+2
matrices [PDG, §15.2]; $(1020) =y, ,cos0, —y;sinO, =ss | ) =17,
S
* notice: the vector mixing 6, = 36° ~ tan't | ®(780)=g,sin0, +y,cosO, =~ |0, ~36°.
(1/72), i.e. the ¢® meson is almost ss only z(uU+da)/\/5
[i.e. § — KK, see KLOE exp.]; L ) )

(... continue)
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The decay amplitudes in the e.m. channels

may be computed, up to a common factor, f

and compared to the experiment;

Y

Qo

Ol
o)

Few problems :

* the values are small, e.g. BR(p®—>e*e”) =
4.7%x107;

* the phase-space factor is important,
especially for ¢, which is very close to the
ss threshold.

However, the overall picture is clear: the
theory explains the data very well.

Paolo Bagnaia - FNSN2 - 01

Meson mixing: 1-

.

- a
p°(770) = % — dd);
$(1020) =55 s MalX —ee)
SS;
1 OCZanQ’
(780 uu+dd
(780) = \/5( ); )
( 2
1 (2 -1 1
[p’ —>e'e)c| —| =—— || ==;
v L {2(3 3ﬂ 2
B 2
1 (2 -1 1
—>il(wo>ee )| ——+— || =—;
( ) _ﬁ(3 3ﬂ 18
r 2
(o —>e'e) o 1} S
'3
9 :1:2 (theo)
> L Ly =
P 8.8+2.6:1:1.7+0.4 (exp).

J
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Graphical construction of the baryons

The construction looks complicated,
k A

but in fact is quite simple :
e add the three quarks one after the Y
other: ol ddd udd uud uuu
e count the resultant multiplicity.
In group’s theory language :
303®3=1008D8 D1 0T
i.e. two octets, a decuplet and a
singlet.
[dem. : 17
3®3= 6@ 3;
6®3=10®8;
3®3=8®1. g.e.d] T
Both for 10, 8, 8' and 1 the three | )

quarks have L = 0.
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Graphical construction of the baryons

mass*

Baryons qqq | L 5 S Q) (MeV)
uud, udd Ya Y2, -2 0 1,0 940

uds 0 0 -1 0 1115

uus, uds, dds 1 1,0, -1 -1 1,0,-1 1190

uss, dss Ya Y2,-Ya -2 1,0 1320

\ uuu, uud, udd, ddd 3,13, Yy -ty 3/, 1 0 12,1,0,-1| 1230

PILASDIAND Va uus, uds, dds 1 1,0, -1 -1 1,0,-1 1385
=0 = uss, dss Y Vs, Y5 -2 1,0 1530
Q- | SSS 0 0 -3 -1 1670

Notes :
(1) Q=13+%Y=1;+%(B+S);B=1.
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Graphical construction of the baryons: %*

The lowest mass multiplet is an
octet, which contains the familiar p - ~
and n, a triplet of S=-1 (the X’s) a |Y 4
singlet S=-1 (the A) and a doublet

of S=-2 (the =’s, sometimes called |, 1 2 ﬁ
“cascade baryons”). ddu duu
The three quarks have £ = 0 and - S0 A 5P
spin (M), i.e. a total spin of %. 90 d:s :d.s u:s

The masses are :

14 ° ®
dss uss
e ~ 940 MeV for p and n;
e ~1115 MeV for the A; d u
e ~1190 MeV for the X’s; Pa b T

e ~1320 MeV for the Z's; |

[ [
(difference of < few MeV in the L -3/2 -1/2 +1/2 +3/2 |,
isospin  multiplet, due to e-m
interactions.
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]| Graphical construction of the baryons: 3/,

The decuplet is rather simple (but
see the next slide). The spins are
aligned (M 1 M), to produce an
overall J=3/,.

The masses, at percent level, are :

~ 1230 MeV for the A’s;
~ 1385 MeV for the X™s,
~ 1530 MeV for the Z"'s
~ 1670 MeV for the Q.

Notice that the mass split among
multiplets is very similar, ~150 MeV
(lot of speculations, no real
explanation).
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Y A
A~ AO A* A**
+1 - o [ ) o ([ ]
ddd ddu duu uuu
2*_ Z*O 2*+
0 o [ ) o
dds uds uus
E*_ E*O
-1 o [
dss uss
d‘if'u
Q_
-2 (]
SSS
| | | —>
-3/2 -1/2 +1/2 +3/2 1,
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SU(3)

For the SU(2) symmetry, the
generators are the Pauli matrices.
The third one is associated to the
conserved quantum number I,

For SU(3), the Gell-Mann matrices T,
(j=1-8) are defined (next page).

The two diagonal ones are associated
to the operators of the third
component of isospin (T;) and
hypercharge (Tj).

The eigenvectors |u) |[d) |s) are
associated with the quarks (u, d, s).

in the following, some of the properties of
SU(3) in group theory: no rigorous math,
only results useful for our discussions.

Demonstrations (some trivial) may be found
in [BJ 10] or [YK1 G]. A discussion of the
group theory, applied to elementary
particle physics, can be found in [IE, app. C].

And we have separate — optional — courses.
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p
0 10 0
A,=|1 0 0 A, =il 1
0 0O 0
Gell-Mann matrices A,
0 0 1 0
A,=|0 0 O A; =il 0 T
1 0 O 1
0 0 O 1
1
A,=il0 O =—0
7 V3
01 O 0

. 16 1 0 O
DAl = 5 0 1 0| diagonal.
O 0 1

U=1+— Zsk unitary matrix, det U=1.

- J/
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SU(3) : eigenvectors

Definition of I, Y, quark eigenvectors

and related relations :

f . [t oo e
T,==Ak,==|0 -1 0 Y=—"FXA,==| 0
2 2 0 0 O V3 3 0
1 0 0
‘u>= 0; ‘d>: 1 ‘s>= 0(;
0 0 1
. 1 R 1 2
T, u>:+E u; T, d>:—5\d>; T,|s)=0
1 1 . 2
Y‘u>:+§ u> Y‘d>=+§‘d>; Ys>:—§‘s>
U P 1— _
Ljo)=—lo); 7 d>:+E d); T,[s)=0
T I O, T I
Y‘u>=—§‘u> Y d>:—§ d> Y s>:+§‘s>
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4 y 4 N
de +1/3T o U
-1/2 +1/2 I3
_2/3T S
G
4 Y
+2/3 33
—1)2 +1|/2 |;
ue -1/3 + ed
-




SU(3) : operators C

The ladder operators T, U,, V, :

T, =T, +iT,; U, =T +iT,; V,=T,£iT,;
As an example, take V, : — - — SJ
s 3 ) 4
Vs e _ —\ )
0 0 1 0 0 -\ (0 0 1) |V|T)=-|s);
de /3] o u 1 ' =
7 V,=T,+il,=~10 0 0 +%o 0 0|={0 0 04 Vv]d)=0;
. — 100 1 0 0) (00 0)| v[s)=0;
1/2 #1/2 15 | U S '/
4 )
0 0 1)1
23t V,|uy={0 0 0 0|=0;
- J
; o 48 X ) 0 0 0)lo
A u, V. 0 0 1)(0
V.|d)=|0 0 0] 1|=0;
< — 0 0 0)l0
| — T T, &
1/2 +1/2 1, 0 0 1)(0) (1
0 0 o)l1) o
- )\ AN /
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/ ™\

T, |d>E [u>

T_|u>l= |d>

d 04\ C ;fo u
U,|s>=|d> V,[s>=|u>
N J
/ ™\
$:

V,|u>=-|s> U,ld>=-]|5>
V_|s>=-|u> U_[s>=-|d>
u .4 T > e d
T,|u>F-|d>
9 T_|d>&-|u> )

The ladder operators T,, U,, V,.




Color : a new quantum number

Consider the A** resonance:

e JP=3/2* (measured);

e quark content: uuu state (no other
possibility);

e wave function:
\V(AH) = \Vspace X \Vﬂavor X \Vspin

It is lightest uuu state > € =0 —
Wspace D€ SYymmetric.

The overall spin comes from the
alignment of the spins of the single

quarks (1111 :
|A+> = | ull ull ull >

= Yiayor aNd Y, are symmetric.

— Y(A*) = sym.xsym.xsym. = sym.

... but the A**is a fermion ...
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Oskar W. Greenberg Moo-Young Han Yoichiro Nambu

(etF ) (FI&R B&—ER,
L Nambu Yoichird)

Anomaly : the A** is a spin 3/, fermion and its
function MUST be antisymmetric for the exchange
of two quarks (Pauli principle). However, this
function is the product of three symmetric
functions, and therefore is symmetric — ???.

The solution was suggested in 1964 by Greenberg,
later also by Han and Nambu. They introduced a
new quantum number for strongly interacting
particles, starting from quarks : the COLOR.
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Color : why's and how's

The idea (we will see later the algebra of
the color, the following is quite naive) :

1. quarks exist in three colors (say Red,
Green and Blue, like the TV screen(®):;

2. they sum like in a TV-screen : e.g. when
RGB are all present, the screen is
the "anticolor" is such that, color +
anticolor gives white (i.e.l= G + B);

3. anti-quarks are equipped with ANTI-
colors (see previous point);

4. Mesons and Baryons, which are made
of quarks, are white and have no color:
they are a "color singlet".

Therefore, we have to include the color in
the complete wave function; e.g. for A**:

\V(AH) = \Vspace X Wjavor X \Vspin X Weolor
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Yeolor = (1/\/6) ( urugub + ugubur + uburug
- U U Uy - U Upu, - upu U,

[where u, ug, U, are the color functions for
u quarks of red, green, blue type]

Then w_,, Iis antisymmetric for the
exchange of two quarks and so is the
global wave function.

The introduction of the color has many
other experimental evidences and
theoretical implications, which we will
discuss in the following.

(1) however, these colors are in no way similar to
the popular colors; therefore their name is
totally irrelevant.
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Symmetries and Multiplets

for a complete discussion, [BJ 10].

1. Since the strong interactions conserve

isotopic spin (“I”), hadrons gather in
multiplets. Within each multiplet, the
states are identified by the value of ..

. In the absence of effects that break the

symmetry, the members of each
multiplet would be degenerate in mass.
The electromagnetic interactions, which
do not respect the isospin symmetry,
remove the mass degeneration (at few
%) in isospin multiplets.

. Since the strong interactions conserve I,

[-operators must commute with the
strong interactions Hamiltonian (“H.”)
and with all the operators which in turn
commute with H..

4. Among these operators, consider the
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. Since [Ij;lk] = g,

+

angular momentum J and the parity P.
As a result, all the members of an
isospin multiplet must have the same
spin and the same parity.

H, is also invariant with respect to
unitary representations of SU(2). The
guantum numbers which identify the
components of the multiplets are as
many as the number of generators,
which can be diagonalized
simultaneously, because are mutually
commuting. This number is the rank of
the Group. In the case of SU(2) the rank

is 1 and the operator is Ié.

wmlm, €ach of the
generators commutes with I? :
[2=12+01,2+1;2.

(continue ...)
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Symmetries and Multiplets

7. Therefore I?, obviously hermitian, can

be diagonalized at the same time as I,
and its eigenvalues, together with those
from I, can "tag" the eigenvectors and
the particles.

. This fact gives the possibility to regroup

the states into multiplets with a given
value of I. Within each multiplet the
operators are represented by matrices
(28 + 1) o (2€ + 1). In the language of
group theory they realize "irreducible
representations" of dimensions (28 + 1)
e (26 + 1) of the Group of
transformations.

. We can generalize this mechanism from

the isospin case to any operator : if we
can prove that the hamiltonian is
invariant for a given kind of
transformations, then:

+

a. look for an appropriate symmetry

group,

b. identify its irreducible representations
and derive the possible multiplets,

c. verify that they describe physical

states which actually exist.

10. This approach suggested the idea that

Baryons and Mesons are grouped in
two octets, composed of multiplets of
isotopic spin.

11. In reality, since the differences in mass

between the members of the same
multiplet are ~20%, the symmetry is
“broken” (i.e. approximated).

(... continue ...)
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12.

13.

14.

15.

16.
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Symmetries and Multiplets

Since the members of the octet are characterized by two
quantum numbers, both additives (I; and Y), the
symmetry group must be found among those of rank = 2.
l.e. two of the generators commute between them. We
are interested in the “irreducible representations” of the
group, such that we get any member of a multiplet from
everyone else, using the transformations.

The non-trivial representation (non-trivial = other than the
Singlet) of lower dimension is called “Fundamental
representation”.

In our case, it is SU(3) [NB “flavor SU(3)” in modern jargon,
shortly SU(3).].

In SU(3) there are eight symmetry generators. Two of
them are diagonal and associated to I; and Y.

The fundamental representations are triplets (— quarks),
from which higher multiplets (— hadrons) are derived :

3®3 =1938;
33®3 =1®8® 8D 10.

mesons:

baryons:

Y A
de +1/3T o U
-1/2 +1/2 I3
_2/3T S
Y
+2/3 s
-1/2 +1/2 Iy
ue -1/3 - od
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1. e.g.[BJ, 8];

2.

7]

Vi

large overlap with [FNSN1

isospin and SU(3) : [IE, 2];

3.

app CJ;

4. group theory : [IE,

5.

-8]

7

4

color + eightfold way : [IE

6. G.Salme — appunti.




SAPIENZA  End of chapter 1
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