Status of NLO Monte Carlo for μe scattering

C.M. Carloni Calame, F. Piccinini

INFN Pavia, Italy

MUonE collaboration meeting

Bologna, September 12-13, 2018

with M. Alacevich, M. Chiesa, G. Montagna, O. Nicrosini

μe scattering kinematics for leading order (2 \rightarrow 2, elastic process)

p_1, p_2 initial state μ and e			p_3, p_4 final state μ and e			ld e	
In the lab			In the center of mass				
p_1	=	$(E_{\mu}^{beam},0,0,p)$		p_1	=	$(E^{\mu}_{CM},0,0,p_{CM})$	
p_2	=	$(m_e,0,0,0)$		p_2	=	$(E^e_{CM}, 0, 0, -p_{CM})$	
p_3	=	$p_1 + p_2 - p_4$		p_3	=	$(E_{CM}^{\mu}, p_{CM}\sin\theta, 0, p_{CM}\cos\theta)$	
p_4	=	$(E_e, p_e \sin \theta_e, 0, p)$	$e\cos heta_e)$	p_4	=	$(E_{CM}^e, -p_{CM}\sin\theta, 0, -p_{CM}$	

Invariants:

$$s = (p_1 + p_2)^2 = (p_3 + p_4)^2$$

= $m_e^2 + m_\mu^2 + 2E_{CM}^\mu E_{CM}^e + 2p_{CM}^2$
= $m_e^2 + m_\mu^2 + 2E_\mu^{beam} m_e$

$$\begin{split} p_{CM} &= \frac{1}{2} \sqrt{\frac{\lambda(s,m_{\mu}^2,m_e^2)}{s}} \\ t &= m_{\mu}^2 \frac{x^2}{x-1} \propto E_e \end{split}$$

$$p_{2} = (E_{CM}^{\mu}, o, o, p_{CM})$$

$$p_{3} = (E_{CM}^{\mu}, p_{CM} \sin \theta, 0, p_{CM} \cos \theta)$$

$$p_{4} = (E_{CM}^{e}, -p_{CM} \sin \theta, 0, -p_{CM} \cos \theta)$$

$$t = (p_1 - p_3)^2 = (p_2 - p_4)^2$$

= $-2p_{CM}^2(1 - \cos \theta)$
= $2m_e^2 - 2E_e m_e$

$$\begin{split} E_e &= m_e \frac{1 + r^2 \cos^2 \theta_e}{1 - r^2 \cos^2 \theta_e} \\ r &\equiv \frac{\sqrt{\left(E_{\mu}^{beam}\right)^2 - m_{\mu}^2}}{E_{\mu}^{beam} + m_e} \end{split}$$

LO cross section

analytical expression

$$\frac{d\sigma}{dt} = \frac{4\pi\alpha^2}{\lambda(s,m_{\mu}^2,m_e^2)} \left[\frac{(s-m_{\mu}^2-m_e^2)^2}{t^2} + \frac{s}{t} + \frac{1}{2} \right]$$

• VP gauge invariant subset of NLO rad. corr.

• factorized over tree-level: $\alpha \rightarrow \alpha(t)$

· first step towards higher precision and to estimate of th. uncertainties:

NLO Monte Carlo fully differential predictions

Carloni, Piccinini (INFN, Pavia)

µe scattering at NLO

NLO amplitudes: vacuum polarization

NLO QED virtual diagrams $\mathcal{A}_{NLO}^{virtual}$ (dependent on λ)

+ counterterms

NLO real diagrams $\mathcal{A}_{NLO}^{1\gamma}$

 $\sigma_{NLO} = \sigma_{2\to 2} + \sigma_{2\to 3} = \sigma_{\mu e \to \mu e} + \sigma_{\mu e \to \mu e\gamma}$

→ IR singularities are regularized with a vanishingly small photon mass λ → $[2 \rightarrow 2]/[2 \rightarrow 3]$ phase space splitting at an arbitrarily small γ -energy cutoff ω_s * $\mu e \rightarrow \mu e$

$$\sigma_{2\to 2} = \sigma_{LO} + \sigma_{NLO}^{virtual} = \frac{1}{F} \int d\Phi_2(|\mathcal{A}_{LO}|^2 + 2\Re[\mathcal{A}_{LO}^* \times \mathcal{A}_{NLO}^{virtual}(\boldsymbol{\lambda})])$$

• $\mu e \rightarrow \mu e \gamma$

$$\sigma_{2\to3} = \frac{1}{F} \int_{\omega>\lambda} d\Phi_3 |\mathcal{A}_{NLO}^{1\gamma}|^2 = \frac{1}{F} \left(\int_{\lambda<\omega<\omega_s} d\Phi_3 |\mathcal{A}_{NLO}^{1\gamma}|^2 + \int_{\omega>\omega_s} d\Phi_3 |\mathcal{A}_{NLO}^{1\gamma}|^2 \right)$$
$$= \Delta_s(\lambda, \omega_s) \int d\sigma_{LO} + \frac{1}{F} \int_{\omega>\omega_s} d\Phi_3 |\mathcal{A}_{NLO}^{1\gamma}|^2$$

 the integration over the 2/3-particles phase space is done with MC techniques and fully-exclusive events are generated

Method and cross-checks

- · Calculation performed in the on-shell renormalization scheme
- · Full mass dependency kept everywhere, fermions' helicities kept explicit
- Diagrams manipulated with the help of FORM, independently by at least two of us [perfect agreement]
 J. Vermaseren, https://www.nikhef.nl/~form

 1-loop tensor coefficients and scalar 2-3-4 points functions evaluated with LoopTools and Collier libraries
 [perfect agreement]
 T. Hahn, http://www.feynarts.de/looptools

A. Denner, S. Dittmaier, L. Hofer, https://collier.hepforge.org

- UV finiteness and λ independence verified with high numerical accuracy
- 3 body phase-space cross-checked with 3 independent implementations [perfect agreement]
- Comparison with past (and present) independent results

P. Van Nieuwenhuizen, Nucl. Phys. B 28 (1971) 429

T. V. Kukhto, N. M. Shumeiko and S. I. Timoshin, J. Phys. G 13 (1987) 725

D. Y. Bardin and L. Kalinovskaya, DESY-97-230, hep-ph/9712310

N. Kaiser, J. Phys. G 37 (2010) 115005

Fael, Passera et al., see next slide

G. D'Ambrosio, Lettere al Nuovo Cimento, Vol. 38, n. 18, 1983

preliminary results

in 4 typical event selections

- 1 0 mrad $\leq \vartheta_{\mu,e} \leq 100$ mrad, $E_e \geq 200$ MeV
- 2 0 mrad $\leq \vartheta_{\mu,e} \leq 100$ mrad, $E_e \geq 1$ GeV
- $3 \text{ as } 1+ \operatorname{acoplanarity} \operatorname{cut} |\pi (\phi_e \phi_\mu)| \leq 3.5 \operatorname{mrad}$
- 4 as 2+ acoplanarity cut $|\pi (\phi_e \phi_\mu)| \le 3.5$ mrad
- size of three separate contributions at NLO:
 - **1** QED radiation (virtual and real) from μ line
 - 2 QED radiation (virtual and real) from electron line
 - **3** QED interference between μ and e line
- size of genuine electroweak effects
 - Z exchange diagram in addition to the γ exchange
 - Z and W in the virtual loops (including QED real rad. from tree-level with Z exchange)
- size of finite electron mass effects in the NLO corrections (in progress)

μ -e angle correlation in the lab

Integrated cross sections (μ barn)

Cross section	Setup 1	Setup 2	Setup 3	Setup 4						
$\mu^+e^- ightarrow \mu^+e^-$										
$\sigma_{\rm NLO}^{\rm QED}$	1325.216(15)	255.8439(27)	1162.445(10)	222.7727(20)						
$\sigma_{\rm NLO}^{\rm electron}$	1324.443(27)	255.5486(22)	1163.120(34)	223.4353(27)						
$\sigma_{\rm NLO}^{\rm muon}$	1264.96276(75)	244.97022(68)	1264.0745(75)	244.41301(68)						
$\sigma_{\rm NLO}^{\rm electron-muon}$	0.871(43)	0.3640(57)	0.312(90)	-0.0367(54)						
$\mu^-e^- ightarrow \mu^-e^-$										
$\sigma_{ m NLO}^{ m QED}$	1323.485(18)	255.1194(26)	1161.879(10)	222.8511(18)						
$\sigma_{\rm NLO}^{\rm electron}$	1324.438(24)	255.5487(26)	1163.143(25)	223.4351(27)						
$\sigma_{ m NLO}^{ m muon}$	1264.9630(76)	244.97058(46)	1264.0747(75)	244.41333(45)						
$\sigma_{\rm NLO}^{\rm electron-muon}$	-0.855(50)	-0.3610(56)	-0.254(66)	+0.0415(50)						
Relative correction	Setup 1	Setup 2	Setup 3	Setup 4						
$\mu^+e^- ightarrow \mu^+e^-$										
$\delta_{\rm NLO}^{\rm QED}$	0.04755(1)	0.04409(1)	-0.081114(37)	-0.0908681(81)						
$\delta_{\rm NLO}^{\rm electron}$	0.04694(2)	0.04289(1)	-0.080582(27)	-0.088164(11)						
$\delta_{ m NLO}^{ m muon}$	-0.000075(6)	-0.000280(3)	-0.0007794(59)	-0.0025543(28)						
$\delta_{\rm NLO}^{\rm electron-muon}$	0.000686(40)	0.001485(23)	0.000247(69)	-0.000150(22)						
$\mu^-e^- o \mu^-e^-$										
$\delta_{\rm NLO}^{\rm QED}$	0.04618(1)	0.04114(1)	-0.081543(27)	-0.0905482(75)						
$\delta_{\rm NLO}^{\rm electron}$	0.04694(2)	0.04289(1)	-0.080563(20)	-0.088165(11)						
$\delta_{ m NLO}^{ m muon}$	-0.000077(6)	-0.000279(2)	-0.0007793(60)	-0.0025529(18)						
$\delta_{\text{NLO}}^{\text{electron}-\text{muon}}$	-0.000676(40)	-0.001473(23)	-0.000200(52)	0.000169(20)						

θ_{μ} distribution and corrections in the lab

$heta_e$ distribution and corrections in the lab

t_{24} (t on the "electron line") distribution and corrections

t_{13} (t on the " μ line") distribution and corrections

in terms of gauge invariant radiation contributions

in terms of gauge invariant radiation contributions

in terms of gauge invariant radiation contributions

$\Delta lpha$ measured on top of LO or NLO

Carloni, Piccinini (INFN, Pavia)

$\Delta \alpha$ measured on top of LO or NLO

$\Delta \alpha$ measured on top of LO or NLO

$\Delta \alpha$ measured on top of LO or NLO

