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New space-like proposal for HLO

which involves Δαhad(t), the hadronic contribution to the running of  
α in the space-like region. It can be extracted from scattering data! 

  At present, the leading hadronic contribution aμHLO is computed  
    via the time-like formula:

aHLO
µ =

1

4⇡3

Z 1

4m2
⇡

dsK(s)�0
had(s)

K(s) =

Z 1

0
dx

x2 (1� x)

x2 + (1� x)
�
s/m2

µ

�

  Alternatively, exchanging the x and s integrations in aμHLO

aHLO
µ =

↵

⇡

Z 1

0
dx (1� x)�↵had[t(x)]

t(x) =
x2m2

µ

x� 1
< 0

Hadronst

M. Passera    Padova   July 13 2017 21

Muon-electron scattering
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What we know :: Anatomy of NLO

Born matrix-element

1-loop matrix elements

Real Radiation  
tree-level matrix elements

1.6 Adjoint Equations

1. Total-di↵erential system , Path parametrization

• a posteriori (standard) ::

parametrizing the kinematic variables after deriving the corresponding di↵. eqs.

(as shown before)

• a priori (novel) ::

introducing a parameter-dependent external kinematics, say pi = pi(⌧) (for a

given i) and di↵erentiating w.r.t. to ⌧ .

2. The Wronski matrix W of the homogeneous solutions obeyes the adjoint equation

() B0 = W

3. The homogeneous solutions , maximal cuts of the integrals

4. The maximal cuts ( Baikov parametrization

5. The homogeneous solutions , kernels of iterated integrals

6. IBPs on the cuts , algebraic relations for iterated integrals

) Elliptic-integrals relations from IBPs on the cuts.

2. Integrand Decomposition

Ni1...in =
nX

=1

Ni1...i�1i+1...in Di +�i1...in (2.1)

3. NLO x-section

d�LO (3.1)

�NLO ⇠
Z

d�m+1

d�R

NLO +

Z

d�m

d�V

NLO (3.2)
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Subtractions and MC-integration

 
Known since long

Fael Passera
- double checked
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What we need :: Anatomy of NNLO

Double-real Radiation  
tree-level matrix elements

Single-real Radiation  
1-loop matrix elements

Virtual 2-loop matrix element

Anatomy of a NNLO calculation e.g. pp → 2j

✓ double real radiation matrix elements dσ̂RR
NNLO

✓ implicit poles from double unresolved emission

✓ single radiation one-loop matrix elements dσ̂RV
NNLO

✓ explicit infrared poles from loop integral
✓ implicit poles from soft/collinear emission

✓ two-loop matrix elements dσ̂V V
NNLO

✓ explicit infrared poles from loop integral
✓ including square of one-loop amplitude

dσ̂NNLO ∼
∫

dΦ
m+2

dσ̂RR
NNLO +

∫

dΦ
m+1

dσ̂RV
NNLO +

∫

dΦm

dσ̂V V
NNLO

– p. 31
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GOSAM
Recent improvements  
for QED/EW corrections
Chiesa Greiner Tramontano

 
this talk!



What we need :: Anatomy of NNLO

Anatomy of a NNLO calculation e.g. pp → 2j

✓ double real radiation matrix elements dσ̂RR
NNLO

✓ implicit poles from double unresolved emission

✓ single radiation one-loop matrix elements dσ̂RV
NNLO

✓ explicit infrared poles from loop integral
✓ implicit poles from soft/collinear emission

✓ two-loop matrix elements dσ̂V V
NNLO

✓ explicit infrared poles from loop integral
✓ including square of one-loop amplitude

dσ̂NNLO ∼
∫

dΦ
m+2

dσ̂RR
NNLO +

∫

dΦ
m+1

dσ̂RV
NNLO +

∫

dΦm

dσ̂V V
NNLO

– p. 31

Subtractions and MC-integration?

Double-real Radiation  
tree-level matrix elements

Single-real Radiation  
1-loop matrix elements

Virtual 2-loop matrix element

Anatomy of a NNLO calculation e.g. pp → 2j

✓ double real radiation matrix elements dσ̂RR
NNLO

✓ implicit poles from double unresolved emission

✓ single radiation one-loop matrix elements dσ̂RV
NNLO

✓ explicit infrared poles from loop integral
✓ implicit poles from soft/collinear emission

✓ two-loop matrix elements dσ̂V V
NNLO

✓ explicit infrared poles from loop integral
✓ including square of one-loop amplitude

dσ̂NNLO ∼
∫

dΦ
m+2

dσ̂RR
NNLO +

∫

dΦ
m+1

dσ̂RV
NNLO +

∫

dΦm

dσ̂V V
NNLO

– p. 31

Anatomy of a NNLO calculation e.g. pp → 2j

✓ double real radiation matrix elements dσ̂RR
NNLO

✓ implicit poles from double unresolved emission

✓ single radiation one-loop matrix elements dσ̂RV
NNLO

✓ explicit infrared poles from loop integral
✓ implicit poles from soft/collinear emission

✓ two-loop matrix elements dσ̂V V
NNLO

✓ explicit infrared poles from loop integral
✓ including square of one-loop amplitude

dσ̂NNLO ∼
∫

dΦ
m+2

dσ̂RR
NNLO +

∫

dΦ
m+1

dσ̂RV
NNLO +

∫

dΦm

dσ̂V V
NNLO

– p. 31

Anatomy of a NNLO calculation e.g. pp → 2j

✓ double real radiation matrix elements dσ̂RR
NNLO

✓ implicit poles from double unresolved emission

✓ single radiation one-loop matrix elements dσ̂RV
NNLO

✓ explicit infrared poles from loop integral
✓ implicit poles from soft/collinear emission

✓ two-loop matrix elements dσ̂V V
NNLO

✓ explicit infrared poles from loop integral
✓ including square of one-loop amplitude

dσ̂NNLO ∼
∫

dΦ
m+2

dσ̂RR
NNLO +

∫

dΦ
m+1

dσ̂RV
NNLO +

∫

dΦm

dσ̂V V
NNLO

– p. 31



�

��

�

��

γ

γ

�� ��

�

�

��

�

��
γ

γ

� �

�

�

��

�

��

γ

�

��

γ

�

�

��

�

��

� γγ

��
�

�

��

�

��

γ

γ
� �

�

�

��

�

��

γ

γ
�� ��

�

Figure 6: Feynman diagrams contributing to the one-loop µe-scattering amplitude.
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Figure 7: Feynman diagrams contributing to the two-loop µe-scattering amplitude.
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MUonE @ 1- and 2-loop
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Figure 6: Feynman diagrams contributing to the one-loop µe-scattering amplitude.
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Figure 7: Feynman diagrams contributing to the two-loop µe-scattering amplitude.
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Amplitudes Decomposition:  
                                            the algebraic way

Basis: {i j k}

Scalar product/Projection: 
to extract the components

a = ax i  +  ay j  +  az k

ax = a.i  

ay = a.j  

az = a.k



Amplitudes Decomposition:  
                                            the algebraic way

=

4. FOR the COLLOQUIUM

4.1 Massless Spin-1 propagator (photon, gluon)

�i
gµ⌫

k2 � i0
(4.1)

1

k2 � i0
! �(k2) ) �gµ⌫ !

X

polarization��

✏µ�(k)
⇣
✏⌫�(k)

⌘⇤
(4.2)

4.2 Fermion propagator

i
(/p+m)

p2 �m2 � i0
(4.3)

1

p2 �m2 � i0
! �(p2 �m2

) ) (/p+m) !
X

spin�s

us(p) ūs(p) (4.4)

4.3 Phase-space

d4� ⌘ d4`1 d4`2 �(4)
⇣
`1 + `2 � P12

⌘
�(+)

⇣
`21 �m2

1

⌘
�(+)

⇣
`22 �m2

2

⌘
(4.5)

4.4 BCFW

(qi � zi⌘)
2 �m2

i = 0 , zi =
q2i �m2

i

2⌘.qi
, (qi � zj⌘)

2 �m2

i = 2⌘.qi(zi � zj) (4.6)

(�1)
1

q2
1
�m2

1

1

q2
2
�m2

2

· · · 1

q2n �m2
n
=

1

q2
1
�m2

1

1

(q2 � z1⌘)2 �m2
2

· · · 1

(qn � z1⌘)2 �m2
n

+
1

(q1 � z2⌘)2 �m2
1

1

q2
2
�m2

2

· · · 1

(qn � z2⌘)2 �m2
n

+ . . . . . .

+
1

(q1 � zn⌘)2 �m2
1

1

(q2 � zn⌘)2 �m2
2

· · · 1

q2n �m2
n

(4.7)

I
dz

z(z � z1)(z � z2) · · · (z � zn)
= 0 (4.8)

(�1)

z1z2 · · · zn
=

1

z1(z1 � z2) · · · (z1 � zn)

+
1

(z2 � z1)z2 · · · (z2 � zn)
+ . . . . . .

+
1

(zn � z1)(zn � z2) · · · (zn � zn�1)zn
(4.9)
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Graph Topology & Integrals

Contents

1. IBP

Topology ::

e = # legs :: pi, (i = 1, . . . , e);

` = # loops :: qi (i = 1, . . . , `);

n = # denominators :: Di (i = 1, . . . , n);

N = # scalar products (of types qi · pj and qi · qj )

N = `(e� 1) +
`(`+ 1)

2
(1.1)

n = # reducible scalar products (expressed in terms of denominators);

m = # irreducible scalar products = N � n :: Si (i = 1, . . . ,m)

Associated Integrals ::

Z

q1...q`

⌘
Z

ddq1
(2⇡)d

· · · ddq`
(2⇡)d

(1.2)

F [d]
n,m(x,y) ⌘

Z

q1...q`

fn,m(x,y) , fn,m(x,y) =
Sy1
1 · · ·Sym

m

Dx1
1 · · ·Dxn

n
(1.3)

1.1 Integration-by-parts Identities (IBPs)

8(n,m), NIBP = # of IBP relations = `(`+ g � 1)

Z

q1...q`

@

@qµi

⇣
vµ fn,m(x,y)

⌘
= 0 , v = q1, . . . , q`, p1, . . . , pe�1. (1.4)

Relations between integrals associated to the same topology (or subtopologies)

c0 F [d]
n,m(x,y) +

X

i,j

ci,j F [d]
n,m(xi,yj) = 0 , (1.5)

xi = {x1, . . . , xi ± 1, . . . , xn} (1.6)

yj = {y1, . . . , yj ± 1, . . . yn} (1.7)
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n,m(x,y)

IBP
=

X

i

ci M
[d]
i (1.10)

• External-leg derivatives:

pµi
@

@pµj
M [d]

k =

Z

q1...q`

pµi
@

@pµj
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mi(x̄, ȳ) = F [d]

n,m(x,y)
IBP
=

X

i

ci M
[d]
i (1.11)

– 2 –

1.1 Integration-by-parts Identities (IBPs)

8(n,m), NIBP = # of IBP relations = `(`+ e� 1)

Z

q1...q`

@

@qµi

⇣
vµ fn,m(x,y)

⌘
= 0 , v = q1, . . . , q`, p1, . . . , pe�1. (1.4)

Relations between integrals associated to the same topology (or subtopologies)

c0 F [d]
n,m(x,y) +

X

i,j

ci,j F [d]
n,m(xi,yj) = 0 , (1.5)

xi = {x1, . . . , xi ± 1, . . . , xn} (1.6)

yj = {y1, . . . , yj ± 1, . . . yn} (1.7)

1.2 Master Integrals (MIs)

Independent set of integrals M [d]
i ,

M [d]
i ⌘

Z

q1...q`
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such that

F [d]
n,m(x,y)

IBP
=

X

k

ckM
[d]
k , 8(n,m) (1.9)

They form a basis for the integrals of the corresponding topology.

1.3 Two special cases

Two types of integrals generated from the master integrands

• Polynomial insertion:

Z

q1...q`

P (qi · pj , qi · qj) mi(x̄, ȳ) =
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such that

F [d]
n,m(x,y)

IBP
=

X

k

ckM
[d]
k , 8(n,m) (1.9)

They form a basis for the integrals of the corresponding topology.

1.3 Two special cases

Two types of integrals generated from the master integrands

• Polynomial insertion:

Z

q1...q`

P (qi · pj , qi · qj) mi(x̄, ȳ) =
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Basis :: Master Functions

Tree level

One Loop

Higher Loops

Known!

Known!

?Unknown?



�NLO =

Z

n

✓
d�Born + d�Virtual

◆
+

Z

n+1

d�Real

�NLO =

Z

n

✓
d�Born + d�Virtual +

Z

1

d�Subtractions

◆
+

Z

n+1

✓
d�Real � d�Subtractions

◆

(p2 �m2
) = (/p�m)(/p+m) (4.10)

�gµ⌫ =

X

polarization��

✏µ�(k)
⇣
✏⌫�(k)

⌘⇤
(4.11)

(/p+m) =

X

spin�s

us(p) ūs(p) (4.12)

D = 4� 2✏

Z
d4�2✏K ⌘

Z
d4k

Z
d�2✏µ ⌘

Z
d4k

Z
d⌦(✏)

Z 1

0

dµ2
(µ2

)
�1�✏

(4.13)

K↵ = k↵ + µ↵ , /K = /k + /µ , K2
= k2 � µ2 ,

�
/k, /µ

 
= 0 =

⇥
�5, /µ

⇤
, /µ = iµ�5

X

s=±
us(k) ūs(k) = (/k +m� iµ�5) (4.14)

X

�=±,0

✏↵�(k)
⇣
✏��(k)

⌘⇤
= �g↵� +

k↵k�

µ2
(4.15)

@x = A(d, x) (4.16)
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Differential Equations for Master Integrals
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Ojk(s) = pj,µ ·
N
∑

α=1

∂sα

∂pk,µ

∂M(s)

∂sα
=

N
∑

α=1

(

pj,µ · ∂sα

∂pk,µ

)
∂M(s)

∂sα
. (33)

According to the available number of the kinematic invariants, the r.h.s. of Eq. (32) and the r.h.s.
of Eq. (33) may be equated to form the following system

N
∑

α=1

(

pj,µ · ∂sα

∂pk,µ

)
∂M(s)

∂sα
= pj,µ

∂M(s)

∂pk,µ
, (34)

which can be solved in order to express ∂M(s)
∂sα

in terms of pj,µ
∂M(s)
∂pk,µ

, so the corresponding identity,
can be finally read as a differential equation for M .
Examples of such equations are the following.

• 2-point case.
• Differentiation with respect to a mass

∂

∂m2

{

p p

}

= −
{

p p

}

(35)

where, for simplicity, we assumed there is just one propagator of mass m.
• Differentiation with respect to the squared momentum

p2 ∂

∂p2

{

p p

}

=
1

2
pµ

∂

∂pµ

{

p p

}

(36)

• 3-point case.

P 2 ∂

∂P 2

{ p1

p2

p3

}

=

=

[

A

(

p1,µ
∂

∂p1,µ
+ p2,µ

∂

∂p2,µ

)

+ B

(

p1,µ
∂

∂p2,µ
+ p2,µ

∂

∂p1,µ

)]{ p1

p2

p3

}

,

(37)

with P = p1 + p2 and A, B rational coefficients.

• 4-point case.

P 2 ∂

∂P 2

{ p1

p2

p3

p4

}

=

[

C

(

p1,µ
∂

∂p1,µ
− p3,µ

∂

∂p3,µ

)

+ Dp2,µ
∂

∂p2,µ
+

+ E(p1,µ + p3,µ)

(
∂

∂p3,µ
− ∂

∂p1,µ
+

∂

∂p2,µ

)]{ p1

p2

p3

p4

}

, (38)
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∂M(s)

∂pk,µ
, (34)

which can be solved in order to express ∂M(s)
∂sα

in terms of pj,µ
∂M(s)
∂pk,µ

, so the corresponding identity,
can be finally read as a differential equation for M .
Examples of such equations are the following.

• 2-point case.
• Differentiation with respect to a mass

∂

∂m2

{

p p

}

= −
{

p p

}

(35)

where, for simplicity, we assumed there is just one propagator of mass m.
• Differentiation with respect to the squared momentum

p2 ∂

∂p2

{

p p

}

=
1

2
pµ

∂

∂pµ

{

p p

}

(36)

• 3-point case.

P 2 ∂

∂P 2

{ p1

p2

p3

}

=

=

[

A

(

p1,µ
∂

∂p1,µ
+ p2,µ

∂

∂p2,µ

)

+ B

(

p1,µ
∂

∂p2,µ
+ p2,µ

∂

∂p1,µ

)]{ p1

p2

p3

}

,

(37)

with P = p1 + p2 and A, B rational coefficients.

• 4-point case.

P 2 ∂

∂P 2

{ p1

p2

p3

p4

}

=

[

C

(

p1,µ
∂

∂p1,µ
− p3,µ

∂

∂p3,µ

)

+ Dp2,µ
∂

∂p2,µ
+

+ E(p1,µ + p3,µ)

(
∂

∂p3,µ
− ∂

∂p1,µ
+

∂

∂p2,µ

)]{ p1

p2

p3

p4

}

, (38)
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Q2 ∂

∂Q2

{ p1

p2

p3

p4

}

=

[

F

(

p1,µ
∂

∂p1,µ
− p2,µ

∂

∂p2,µ

)

+ Gp2,µ
∂

∂p2,µ
+

+ H(p2,µ − p1,µ)

(
∂

∂p1,µ
+

∂

∂p2,µ
+

∂

∂p3,µ

)]{ p1

p2

p3

p4

}

, (39)

with P = p1 + p2, Q = p1 − p3 and C, D, E, F, G, H rational coefficients.

Equation (34) holds for any function M(s). In particular, let us assume that M(s) is a master integral.
We can now substitute the expression of M in the r.h.s. of one of the Eqs.(36-39), according to the
case, and perform the direct differentiation of the integrand. It is clear that we obtain a combination
of several integrals, all belonging to the same topology as M . Therefore, we can use the solutions of
the IBP-id’s, LI-id’s and other identities for that topology and express everything in terms of the
MI’s of the considered topology (and its subtopologies). If there is more than one MI, the procedure
can be repeated for all of them as well. In so doing, one obtains a system of linear differential
equations in s for M and for the other MI’s (if any), expressing their s-derivatives in terms of the
MI’s of the considered topology and of its subtopologies.

The system is formed by a set of first-order differential equations (ODE), one for each MI, say
Mj , whose general structure reads like the following,

∂

∂sα
Mj(D, s) =

∑

k

Ak(D, s) Mk(D, s) +
∑

h

Bh(D, s) Nh(D, s) (40)

where α = 1, · · · ,N , is the label of the invariants, and Nk are MI’s of the subtopologies. Note
that the above equations are exact in D, and the coefficients Ak, Bk are rational factors whose
singularities represent the thresholds and the pseudothresholds of the solution.
The system of equations (40) for Mj is not homogeneous, as they may involve MI’s of subtopologies.
It is therefore natural to proceed bottom-up, starting from the equations for the MI’s of the simplest
topologies (i.e. with less denominators), solving those equations and using the results within the
equations for the MI’s of the more complicated topologies with additional propagators, whose non-
homogeneous part can then be considered as known.

4.2. Boundary conditions

The coefficients of the differential equations (40) are in general singular at some kinematic points
(thresholds and pseudothresholds), and correspondingly, the solutions of the equations can show
singular behaviours in those points, while the unknown integral might have not. The boundary
conditions for the differential equations are found by exploiting the known analytical properties of
the MI’s under consideration, imposing the regularity or the finiteness of the solution at the pseudo-
thresholds of the MI. This qualitative information is sufficient for the quantitative determination
of the otherwise arbitrary integration constants, which naturally arise when solving a system of
differential equations.
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1.4 Dimensionl Recurrence Relations

P (qi · pj , qi · qj) = G(qi, pj) (1.12)

with G = Gram determinant
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(1.13)

Dimension-shifted integrals

G-insertion:

F [d]
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q1...q`

fn,m(x,y) , (1.14)

)
Z

q1...q`

G fn,m(x,y) = ⌦(d, pi) F
[d+2]
n,m (x,y) (1.15)

In the case of Master integrals

x̄ = (1, . . . , 1) , ȳ = (0, . . . , 0)

M [d+2]
k = ⌦(d, pi)

�1
Z

q1...q`

G mk(x̄, ȳ)
IBP
=

X

i

ck,i M
[d]
i (1.16)

which can be seen as a Dimensional recurrence relation

In general, n MIs obey a system of Dimensional recurrence relations

M
[d] ⌘

0

BBB@

M [d]
1

...

M [d]
n

1

CCCA
(1.17)

M
[d+2] = C(d) M[d] (1.18)

1.5 Di↵erential Equations

In general, n MIs obey a system of 1st ODE

@zM
[d] = A(d, z) M[d] (1.19)
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Figure 1: Two-loop four point topologies for e-µ scattering

The arguments ⌘i of this d log-form are referred to as the alphabet and contain the following

9 letters:

⌘1 = x , ⌘2 = 1 + x ,

⌘3 = 1� x , ⌘4 = y ,

⌘5 = 1 + y , ⌘6 = 1� y, ,

⌘7 = x + y , ⌘8 = 1 + x y,

⌘9 = 1� y (1� x � y),

(3.4)

It can be easily checked that all letters are real and positive in the region

x > 0 , 0 < y < 1 . (3.5)

Since the alphabet is rational and has only algebraic roots, the solution can be directly

expressed in terms of GPLs.

4 Master Integrals for the first Integral Family

The following set of MIs satisfy a DEQ, which is linear in ✏

F1 = ✏2 T1 , F2 = ✏2 T2 , F3 = ✏2 T3 ,
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Planar Integrals :: Family-1 

Planar Integrals :: Family-2 
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Non-Planar Integrals

massless electron

massive muon
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Figure 2: Two-loop MIs T1,...,34 for the first integral family.

for each master integral. This can be achieved by either knowing the integral at a special

kinematic point or by demanding the absence of unphysical thresholds that appear in the

alphabet 3.4. Below we describe in detail how the boundary constant for each integral was

fixed:
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Figure 2: Two-loop MIs T1,...,34 for the first integral family.

for each master integral. This can be achieved by either knowing the integral at a special

kinematic point or by demanding the absence of unphysical thresholds that appear in the

alphabet 3.4. Below we describe in detail how the boundary constant for each integral was

fixed:
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Figure 3: Two-loop MIs T1,...,42 for the topology T4
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Figure 3: Two-loop MIs T1,...,42 for the topology T4
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Figure 2: The 44 MIs T1,...,44 for the two-loop non-planar topology T6. Thin lines rep-

resent massless propagators and thick lines stand for massive ones. Each dot indicates

an additional power of the corresponding propagator. Numerator insertions are indicated

explicitly on top of each diagram.
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Figure 2: The 44 MIs T1,...,44 for the two-loop non-planar topology T6. Thin lines rep-

resent massless propagators and thick lines stand for massive ones. Each dot indicates

an additional power of the corresponding propagator. Numerator insertions are indicated

explicitly on top of each diagram.
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Let us assume that H can be split in two terms as

H(t) = H0(t) + ϵH1(t) , (2.2)

where H0 is a solvable Hamiltonian and ϵ ≪ 1 is a small perturbation parameter. We may

move to the interaction picture by performing a transformation via a unitary operator B.

In this representation any operator A transforms according to

A(t) = B(t)AI(t)B
†(t) . (2.3)

In the interaction picture one imposes that only H1 (H0) enters the time evolution of the

states (of the operators), thus B is obtained by imposing

i! ∂tUI(t) = ϵH1,I(t)UI(t) +
(

H0,I(t)− i!B†(t) ∂tB(t)
)

UI(t)
!
= ϵH1,I(t)UI(t), (2.4)

so that B fulfills

i! ∂tB(t) = H0(t)B(t) . (2.5)

In the interaction picture the Schrödinger equation can be cast in a canonical form,

i! ∂t|ΨI(t)⟩ = ϵH1,I(t)|ΨI(t)⟩ , (2.6)

where the ϵ-dependence is factorized. If the Hamiltonian H0 at different times commute,

the solution of Eq. (2.5) is

B(t) = e
− i

!

∫ t
t0

dτH0(τ) . (2.7)

The important remark in this derivation is that, as a consequence of the linear ϵ-

dependence of the original Hamiltonian Eq. (2.2), the states fulfill an equation in a canonical

form by means of a transformation matrix B that obeys the differential equation (2.5). This

simple quantum mechanical example contains the two main guiding principles for building

canonical systems of differential equations for Feynman integrals:

• choose a set of Master Integrals obeying a system of differential equations linear in ϵ;

• find the transformation matrix by solving a differential equation governed by the

constant term.

In this example H0(t) and B(t) commute. In the case of Feynman integrals, no assumption

can be made on the properties of the matrix associated to the systems of DE’s built out

of IBP-id’s. Therefore, in the following, we need to consider the generic case of non-

commutative operators.
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Quantum Mechanics
Schroedinger Eq’n (eps-linear Hamiltonian)

Interaction Picture

Matrix Transform

Schroedinger Eq’n (canonical form)

10. Remainder Theorem

f(x)

g(x)
= q(x) +

r(x)

g(x)
, deg(r) < deg(g) (10.1)

g(x) = (x� x0) : ) f(x)

(x� x0)
= q(x) +

r0

(x� x0)
, r0 = f(x0) (10.2)

11. Quantum Mechanics

i~ @t| (t)i = H(✏, t)| (t)i , H(✏, t) = H0(t) + ✏H1(t) (11.1)

– 8 –

8. Di↵. Eqs.

Hi,I(t) = B
†
(t) Hi(t) B(t) (8.1)

@x f(x, y, ✏) =

⇣
A10(x, y) + ✏A11(x, y)

⌘
f(x, y, ✏) (8.2)

@y f(x, y, ✏) =

⇣
A20(x, y) + ✏A21(x, y)

⌘
f(x, y, ✏) (8.3)

@x g(x, y, ✏) = ✏Â1(x, y) g(x, y, ✏) (8.4)

@y g(x, y, ✏) = ✏Â2(x, y) g(x, y, ✏) (8.5)

dg(x, y, ✏) = ✏ dÂ(x, y) g(x, y, ✏) , dÂ ⌘ Â1dx+ Â2dy (8.6)

{x, 1� x, y, 1� y, 1� x� y, x+ y} (8.7)
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Magnus Expansion

BCH-formula

 Magnus’ series :: Matrix Exponential 

System of 1st ODE

............

where H0 is a solvable Hamiltonian and ϵ ≪ 1 is a small perturbation parameter. We may

move to the interaction picture by performing a transformation via a unitary operator B.

In this representation any operator A transforms according to

A(t) = B(t)AI(t)B
†(t) . (2.3)

In the interaction picture one imposes that only H1 (H0) enters the time evolution of the

states (of the operators), thus B is obtained by imposing

i! ∂tUI(y) = ϵH1,I(t)UI(t) +
(

H0,I(t)− i!B†(t) ∂tB(t)
)

UI(t)
!
= ϵH1,I(t)UI(t), (2.4)

so that B fulfills

i! ∂tB(t) = H0(t)B(t) . (2.5)

In the interaction picture the Schrödinger equation can be cast in a canonical form,

i! ∂t|ΨI(t)⟩ = ϵH1,I(t)|ΨI(t)⟩ , (2.6)

where the ϵ-dependence is factorized. If the Hamiltonian H0 at different times commute,

the solution of Eq. (2.5) is

B(t) = e
− i

!

∫ t
t0

dτH0(τ) . (2.7)

The important remark in this derivation is that, as a consequence of the linear ϵ-

dependence of the original Hamiltonian Eq. (2.2), the states fulfill an equation in a canonical

form by means of a transformation matrix B that obeys the differential equation (2.5). This

simple quantum mechanical example contains the two main guiding principles for building

canonical systems of differential equations for Feynman integrals:

• choose a set of Master Integrals obeying a system of differential equations linear in ϵ;

• find the transformation matrix by solving a differential equation governed by the

constant term.

In this example H0(t) and B(t) commute. In the case of Feynman integrals, no assumption

can be made on the properties of the matrix associated to the systems of DE’s built out

of IBP-id’s. Therefore, in the following, we need to consider the generic case of non-

commutative operators.

3. Magnus series expansion

Consider a generic linear matrix differential equation [17]

∂xY (x) = A(x)Y (x) , Y (x0) = Y0 . (3.1)

If A(x) commutes with its integral
∫ x
x0

dτA(τ), e.g. in the scalar case, the solution can be

written as

Y (x) = e
∫ x
x0

dτA(τ)
Y0 . (3.2)
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A(x) non-commutative
In the general non-commutative case, one can use the Magnus theorem [15] to write the

solution as,

Y (x) = eΩ(x,x0) Y (x0) ≡ eΩ(x) Y0 , (3.3)

where Ω(x) is written as a series expansion, called Magnus expansion,

Ω(x) =
∞
∑

n=1

Ωn(x) . (3.4)

The proof of the Magnus theorem is presented in the Appendix A, together with the actual

expression of the terms Ωn. The first three terms of the expansion (3.4) read as follows:

Ω1(x) =

∫ x

x0

dτ1A(τ1) ,

Ω2(x) =
1

2

∫ x

x0

dτ1

∫ τ1

x0

dτ2 [A(τ1), A(τ2)] ,

Ω3(x) =
1

6

∫ t

x0

dτ1

∫ τ1

x0

dτ2

∫ τ2

x0

dτ3 [A(τ1), [A(τ2), A(τ3)]] + [A(τ3), [A(τ2), A(τ1)]] . (3.5)

We remark that if A and its integral commute, the series (3.4) is truncated at the first

order, Ω = Ω1, and we recover the solution (3.2). As a notational aside, in the following we

will use the symbol Ω[A](x) to denote the Magnus expansion obtained using A as kernel.

3.1 Magnus and Dyson series expansion

Magnus series is related to the Dyson series [17], and their connection can be obtained

starting from the Dyson expansion of the solution of the system (3.1),

Y (x) = Y0 +
∞
∑

n=1

Yn(x) , Yn(x) ≡
∫ x

x0

dτ1 . . .

∫ τn−1

x0

dτn A(τ1)A(τ2) · · ·A(τn) , (3.6)

in terms of the time-ordered integrals Yn. Comparing Eq. (3.3) and (3.6) we have

∞
∑

j=1

Ωj(x) = log

(

Y0 +
∞
∑

n=1

Yn(x)

)

, (3.7)

and the following relations

Y1 = Ω1 ,

Y2 = Ω2 +
1

2!
Ω2
1 ,

Y3 = Ω3 +
1

2!
(Ω1Ω2 + Ω2Ω1) +

1

3!
Ω3
1 ,

...
...

Yn = Ωn +
n
∑

j=2

1

j
Q(j)

n . (3.8)
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In the general non-commutative case, one can use the Magnus theorem [15] to write the

solution as,

Y (x) = eΩ(x,x0) Y (x0) ≡ eΩ(x) Y0 , (3.3)

where Ω(x) is written as a series expansion, called Magnus expansion,

Ω(x) =
∞
∑

n=1

Ωn(x) . (3.4)

The proof of the Magnus theorem is presented in the Appendix A, together with the actual

expression of the terms Ωn. The first three terms of the expansion (3.4) read as follows:
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x0

dτ2

∫ τ2

x0

dτ3 [A(τ1), [A(τ2), A(τ3)]] + [A(τ3), [A(τ2), A(τ1)]] . (3.5)

We remark that if A and its integral commute, the series (3.4) is truncated at the first

order, Ω = Ω1, and we recover the solution (3.2). As a notational aside, in the following we

will use the symbol Ω[A](x) to denote the Magnus expansion obtained using A as kernel.
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Dyson’s series Iterated Integrals  
(generalized polylogs)



Time-evolution in Perturbation Theory  

perturbation parameter: ɛ  

Linear Hamiltonian in ɛ 

Unitary transform  

Schroedinger Equation   
in the interaction picture (ɛ-factorization)  

solution: Dyson series 

Kinematic-evolution in Dimensional Regularization 

space-time dimensional parameter: ɛ = (4-d)/2 

Linear system in ɛ 

non-Unitary Magnus transform  

System of Differential Equations   in canonical form (ɛ-factorization)  

solution: Dyson/Magnus series 

Henn (2013)

Argeri, Di Vita, Mirabella,  
Schlenk, Schubert, Tancredi, P.M. (2014)

Quantum Mechanics Feynman Integrals

Feynman integrals can be determined from differential equations that looks like   
gauge transformations

�NLO =

Z

n
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d�Born + d�Virtual

◆
+

Z

n+1

d�Real

�NLO =

Z

n
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d�Born + d�Virtual +

Z

1

d�Subtractions

◆
+

Z

n+1

✓
d�Real � d�Subtractions

◆

(p2 �m2
) = (/p�m)(/p+m) (4.10)

�gµ⌫ =

X

polarization��

✏µ�(k)
⇣
✏⌫�(k)

⌘⇤
(4.11)
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X

spin�s

us(p) ūs(p) (4.12)
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Z
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Z
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)
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�
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= 0 =

⇥
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⇤
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= e
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boundary term 
(simpler integral)



The matrices Q(j)
n are defined as

Q(j)
n =

n−j+1
∑

m=1

Q(1)
m Q(j−1)

n−m , Q(1)
n ≡ Ωn , Q(n)

n ≡ Ωn
1 . (3.9)

In the following, we will use both Magnus and Dyson series. The former allows us to

easily demonstrate how a system of DE’s, whose matrix is linear in ϵ, can be cast in the

canonical form. The latter can be more conveniently used for the explicit representation

of the solution.

4. Differential equations for Master Integrals

We consider a linear system of first order differential equations

∂xf(ϵ, x) = A(ϵ, x) f(ϵ, x) , (4.1)

where f is a vector of MI’s, while x is a variable depending on kinematic invariants and

masses. We suppose that A depends linearly on ϵ,

A(ϵ, x) = A0(x) + ϵA1(x) , (4.2)

and we change the basis of MI’s via the Magnus series obtained by using A0 as kernel,

f(ϵ, x) = B0(x) g(ϵ, x) , B0(x) ≡ eΩ[A0](x,x0) . (4.3)

Using Eq. (A.13), one can show that B0 obeys the equation,

∂xB0(x) = A0(x)B0(x) , (4.4)

which, analogously to the quantum-mechanical case, Eq. (2.5), implies that the new basis

g of MI’s fulfills a system of differential equations in the canonical factorized form,

∂xg(ϵ, x) = ϵÂ1(x)g(ϵ, x) . (4.5)

The matrix Â1 is related to A1 by a similarity map,

Â1(x) = B−1
0 (x)A1(x)B0(x) , (4.6)

and does not depend on ϵ. The solution of Eq. (4.5) can be found by using the Magnus

theorem with ϵÂ1 as kernel

g(ϵ, x) = B1(ϵ, x)g0(ϵ) , B1(ϵ, x) = eΩ[ϵÂ1](x,x0) , (4.7)

where the vector g0 corresponds to the boundary values of the MI’s. Therefore, the solution

of the original system Eq. (4.1) finally reads,

f(ϵ, x) = B0(x)B1(ϵ, x)g0(ϵ) . (4.8)
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Â1(x) = B−1
0 (x)A1(x)B0(x) , (4.6)

and does not depend on ϵ. The solution of Eq. (4.5) can be found by using the Magnus

theorem with ϵÂ1 as kernel
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g(ϵ, x) = B1(ϵ, x)g0(ϵ) , B1(ϵ, x) = eΩ[ϵÂ1](x,x0) , (4.7)
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easily demonstrate how a system of DE’s, whose matrix is linear in ϵ, can be cast in the

canonical form. The latter can be more conveniently used for the explicit representation

of the solution.

4. Differential equations for Master Integrals

We consider a linear system of first order differential equations

∂xf(ϵ, x) = A(ϵ, x) f(ϵ, x) , (4.1)

where f is a vector of MI’s, while x is a variable depending on kinematic invariants and

masses. We suppose that A depends linearly on ϵ,
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and we change the basis of MI’s via the Magnus series obtained by using A0 as kernel,
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Using Eq. (A.13), one can show that B0 obeys the equation,

∂xB0(x) = A0(x)B0(x) , (4.4)

which, analogously to the quantum-mechanical case, Eq. (2.5), implies that the new basis

g of MI’s fulfills a system of differential equations in the canonical factorized form,

∂xg(ϵ, x) = ϵÂ1(x)g(ϵ, x) . (4.5)

The matrix Â1 is related to A1 by a similarity map,

Â1(x) = B−1
0 (x)A1(x)B0(x) , (4.6)

and does not depend on ϵ. The solution of Eq. (4.5) can be found by using the Magnus

theorem with ϵÂ1 as kernel

g(ϵ, x) = B1(ϵ, x)g0(ϵ) , B1(ϵ, x) = eΩ[ϵÂ1](x,x0) , (4.7)

where the vector g0 corresponds to the boundary values of the MI’s. Therefore, the solution
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eps-linear basis

8. Di↵. Eqs.

@x f(x, y, ✏) =
⇣
A10(x, y) + ✏A11(x, y)

⌘
f(x, y, ✏) (8.1)

@y f(x, y, ✏) =
⇣
A20(x, y) + ✏A21(x, y)

⌘
f(x, y, ✏) (8.2)

@x g(x, y, ✏) = ✏Â1(x, y) g(x, y, ✏) (8.3)

@y g(x, y, ✏) = ✏Â2(x, y) g(x, y, ✏) (8.4)

dg(x, y, ✏) = ✏ dÂ(x, y) g(x, y, ✏) , dÂ ⌘ Â1dx+ Â2dy (8.5)

{x, 1� x, y, 1� y, 1� x� y, x+ y} (8.6)
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{x, 1� x, y, 1� y, 1� x� y, x+ y} (8.6)

– 8 –

8. Di↵. Eqs.

@x f(x, y, ✏) =
⇣
A10(x, y) + ✏A11(x, y)

⌘
f(x, y, ✏) (8.1)

@y f(x, y, ✏) =
⇣
A20(x, y) + ✏A21(x, y)

⌘
f(x, y, ✏) (8.2)
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Total Differential          dLog-form

5. The matrix A[3]
y,0 has no diagonal term as well,

A[3]
y,0 = N [3]

y,0 , (2.21)

so we can define the last basis change

A[3]
� ! A[4]

� , B[4] ⌘ e⌦[N
[3]
y,0]. (2.22)

After the last transformation we observe that

A[4]
x,0 = 0 = A[4]

y,0 . (2.23)

This means that the basis change of (2.8), with the matrix B given by

B ⌘ B[0]B[1]B[2]B[3]B[4] = e⌦[Am2,0] e⌦[D
[0]
x,0] e⌦[D

[1]
y,0] e⌦[N

[2]
x,0] e⌦[N

[3]
y,0], (2.24)

absorbs the constant terms of Ax and Ay in the ✏-linear systems in (??) and brings them

to the canonical form (2.9):

A�(✏,m
2, x, y) ! ✏Â�(x, y). (2.25)

We can conveniently combine all di↵erential equations to a total di↵erential

dI = ✏ dÂ I with dÂ = Âx dx+ Ây dy , (2.26)

which in our case is a sum of d log forms

dA =
nX

i=1

Mi d log ⌘i (2.27)

2.3 Iterated Integrals

[Ste: the subsubsections are temporary, just while I type!] [Ste: shouldn’t we

put this in a separate chapter?]

2.3.1 Building the solution

The solution of a canonical system of di↵erential equations (2.26), with given initial con-

ditions I(~x0), can be compactly written at a point4~x = (x1, x2) = (x, y) as

I(~x) = P exp

⇢
✏

Z

�
dA

�
I(~x0) . (2.28)

4
The following discussion holds in n-dimensions, but for simplicity we specialize it to the case of a

2-dimensional space, relevant for our calculation. [Ste: It should hold also in the case of more

general exact di↵erentials dfi, not just d log ⌘i, shouldn’t it? Maybe there are MIs for which

the di↵erential equation is more general than just d log but can still be expressed as iterated

integrals.]
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Constant 
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Alphabet

with µ the ’t Hooft scale of dimensional regularization and

S✏ = (4⇡)✏ �(1 + ✏) . (2.5)

All planar Feynman integrals appearing in the virtual corrections of muon-electron scat-

tering at NNLO can be conveniently mapped into two sets of propagators, referred to as

integral families.

The first integral family includes topologies T1, T2, T3, T7 and T8, depicted in figure 1, and

is given by:

D1 = (k1)
2
� m2, D2 = (k2)

2
� m2, D3 = (k1 + p1)

2, D4 = (k2 + p1)
2,

D5 = (k1 + p1 + p2)
2, D6 = (k2 + p1 + p2)

2, D7 = (k1 � k2)
2,

D8 = (k1 + p4)
2, D9 = (k2 + p4)

2, . (2.6)

The second family includes topologies T4, T5, T9 and T10, shown in figure 1, whose propa-

gators are defined as

D1 = (k1)
2
� m2, D2 = (k2)

2, D3 = (k2 + p2)
2, D4 = (k1 + p2)

2,

D5 = (k2 + p2 � p3)
2, D6 = (k1 + p1 � p3)

2
� m2, D7 = (k1 � p1)

2,

D8 = (k2 � p1)
2
� m2, D9 = (k1 � k2)

2
� m2, . (2.7)

For both families k1 and k2 denote the loop momenta.

3 Di↵erential Equation

In order to determine all master integrals appearing in the two integral families we derive

their di↵erential equations in the dimensionless variables �s/m2 and �t/m2. We can

further facilitate their evaluation by performing a variable change

�
s

m2
= x, �

t

m2
=

(1� y)2

y
, (3.1)

which rationalizes the corresponding canonical DEQ.

Choosing an initial set of master integrals that is linear in the dimensional regularization

parameter ✏ we utilize the algorithm described in [9] to find a set of master integrals

satisfying a canonical DEQ in each variable. After combining both DEQ into a single total

di↵erential, we arrive at the following form

dI = ✏dAI , (3.2)

with

dA =
9X

i=1

Mi d log(⌘i) . (3.3)
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Canonical systems and Iterated Integrals

6
Iterated Integrals

Our starting point is the differential equation in the canonical basis

dI = ✏ dA I , (6.1)

with

dA =
nX

i=1

Mi d log ⌘i , (6.2)

where dA is the d log matrix written in terms of differentials d log ⌘i (that contain the kine-
matic dependence) and coefficient matrices Mi (with rational-number entries). The integra-
bility conditions for eq. (9.16) read

@a@bA � @b@aA = 0 , [@aA, @bA] = 0 . (6.3)

6.1. Chen’s Iterated Integrals

The general solution of the canonical system of differential equations (9.16) can be compactly
written at a point ~x = (x1, x2, . . . , xn) as

I(✏, ~x) = P exp

⇢
✏

Z

�
dA

�
I(✏, ~x0) , (6.4)

where I(✏, ~x0) is a vector of arbitrary constants, depending on ✏, while dA depends only on
the kinematic variables. In the above expression, the path-ordered exponential is a short
notation for the series

P exp

⇢
✏

Z

�
dA

�
= + ✏

Z

�
dA + ✏2

Z

�
dA dA + ✏3

Z

�
dA dAdA . . . , (6.5)
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in which the line integral of the product of k matrix-valued 1-forms dA is understood in the
sense of Chen’s iterated integrals [128] (see also [129] and the pedagogical lectures [130]) and
� is a piecewise-smooth path

� : [0, 1] 3 t 7! �(t) = (�1(t), �2(t), . . . , �n(t)) , (6.6)

such that �(0) = ~x0 and �(1) = ~x. It follows from Chen’s theorem that the iterated integrals
in eq. (6.5) do not depend on the actual choice of the path, provided the curve does not
contain any singularity of dA and it does not cross any of its branch cuts, but only on the
endpoints. In this sense, if one fixes ~x0 and lets ~x vary, eq. (6.4) can be thought of as a
function of ~x. In the limit ~x ! ~x0, the line shrinks to a point and all the path integrals
in eq.(6.5) vanish, so that I(✏, ~x) ! I(✏, ~x0), i.e. the integration constants have a natural
interpretation as initial values, and the path-ordered exponential as evolution operator. We
assume that the vector of MI’s at any point I(~x) is normalized in such a way that it admits
a Taylor series in ✏:

I(✏, ~x) = I(0)(~x) + ✏ I(1)(~x) + ✏2I(2)(~x) + . . . . (6.7)

The solution I(✏, ~x) is then in principle determined through (6.4) at any order of the ✏-
expansion, and reads (up to the coefficient of ✏4)

I(0)(~x) = I(0)(~x0) , (6.8)

I(1)(~x) = I(1)(~x0) +

Z

�
dA I(0)(~x0) , (6.9)

I(2)(~x) = I(2)(~x0) +

Z

�
dA I(1)(~x0) +

Z

�
dA dA I(0)(~x0) , (6.10)

I(3)(~x) = I(3)(~x0) +

Z

�
dA I(2)(~x0) , +

Z

�
dA dA I(1)(~x0)

+

Z

�
dA dA dA I(0)(~x0) , (6.11)

I(4)(~x) = I(4)(~x0) +

Z

�
dA I(3)(~x0) +

Z

�
dA dA I(2)(~x0)

+

Z

�
dA dA dA I(1)(~x0) +

Z

�
dA dA dA dA I(0)(~x0) . (6.12)

The problem of solving (9.16), given a set of initial conditions I(~x0), reduces therefore to
the evaluation of matrices of the type

Z

�
dA . . . dA| {z }

k times

, (6.13)

whose entries, due to (9.17), are linear combinations of Chen’s iterated integrals of the form
Z

�
d log ⌘ik . . . d log ⌘i1 ⌘

Z

0t1...tk1

g�
ik

(tk) . . . g�
i1

(t1) dt1 . . . dtk , (6.14)
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with

g�
i (t) =

d

dt
log ⌘i(�(t)) . (6.15)

We refer to the number of iterated integrations k as the weight of the path-integral. The
empty integral (eq. (6.14) for k = 0) is defined to be equal to 1. We stress that only the
matrices (6.13) do not depend on the explicit choice of the path. The individual summands
of the form in eq. (6.14), which contribute to their entries, in general depend on such a
choice. To keep the notation compact, we define

C
[�]

ik,...,i1
⌘

Z

�
d log ⌘ik . . . d log ⌘i1 , (6.16)

which also emphasizes that the iterated integrals in (6.14) are in general functionals of the
path �.

6.1.1. Properties of Chen’s iterated integrals

The general theory of iterated path integrals was developed by Chen [128]. Chen’s iterated
integrals satisfy a number of properties that we summarize for completeness:

• Invariance under path reparametrization. The integral C
[�]

ik,...,i1
does not depend on how

one chooses to parametrize the path �.

• Reverse path formula. If the path ��1 is the path � traversed in the opposite direction,
then

C
[��1

]

ik,...,i1
= (�1)k

C
[�]

ik,...,i1
. (6.17)

• Recursive structure. From (6.14) and (6.15) it follows that the line integral of one d log
is defined as usual

Z

�
d log ⌘ ⌘

Z

0t1

d log ⌘(�(t))

dt
dt , (6.18)

and only depends on the endpoints ~x0, ~x
Z

�
d log ⌘ = log ⌘(~x) � log ⌘(~x0) . (6.19)

It is convenient to introduce the path integral “up to some point along �”: given a
path � and a parameter s 2 [0, 1], one can define the 1-parameter family of paths

�s : [0, 1] 3 t 7! ~x = (�1(s t), �2(s t), . . . , �n(s t)) . (6.20)

If s = 1, then trivially �s = �. If s = 0 the image of the interval [0, 1] is just {~x0}.
If s 2 (0, 1), then the curve �s([0, 1]) starts at �(0) = ~x0 and overlaps with the curve
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we obtain the same numerical value as for path � (6.33), therefore we have shown that our
combination of integrals is indeed path invariant.

6.2. Goncharov Polylogarithms

If the alphabet is rational we are able to express our solution in terms of Goncharov’s
multiple polylogarithms (GPL for short) [131–134],

G(~wn; x) ⌘ G(w1, ~wn�1; x) ⌘

Z x

0

dt
1

t � w1

G(~wn�1; t), (6.39)

G(~0n; x) ⌘
1

n!
logn(x), (6.40)

with ~wn being a vector of n arguments. The number n is referred to as the weight of G(~wn; x)
and amounts to the number of iterated integrations needed to define it. Equivalently one
has

@x G(~wn; x) = @x G(w1, ~wn�1; x) =
1

x � w1

G(~wn�1; x). (6.41)

GPLs inherit the shuffle algebra relations from the Chen’s iterated integrals

G(~m; x) G(~n; x) = G(~m; x) tt G(~n; x) =
X

~p=~m tt~n

G(~p; x), (6.42)

where shuffle product ~m tt~n denotes all possible merges of ~m and ~n preserving their re-
spective orderings. In the limit, where the argument of the GPL approaches the value of
the leftmost weight, the GPL has a logarithmic divergence which we can make explicit with
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Canonical system of DE

Solution as path-ordered exponential

Path invariance

Taylor expansion and Dyson/Magnus series

Chen’s Iterated integral

Henn (2013)

a special case :: Goncharov’s polylogs

All integrals belonging to this family can be reduced to a set of 8 MIs, whose dependence

on p21 is parametrized in terms of the dimensionless variable

x = �
p21
m2

. (A.4)

The basis of integrals

I1 =✏2 , I2 = �✏2p21 , I3 = �✏2p21 ,

I4 = ✏2 2m2 + ✏2(m2
� p21) ,

I5 = ✏(1� ✏)m2 , I6 = �✏3p21 ,

I7 = �✏4 p21 , I8 = ✏3 p21(p
2
1 � m2) (A.5)

fulfills a canonical system of di↵erential equations,

dI = ✏ dA I , (A.6)

where

dA = M0 d log x +M�1 d log(x + 1) , (A.7)
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In the Euclidean region x > 0 the general solution of the system of di↵erential equations

can expressed in terms of harmonic polylogarithms (HPL’s) and the boundary constants

of all master integrals, with the only exception of I1 = 1 and

I5(✏) =
�(1� ✏)�(1 + 2✏)

�(1 + ✏)
, (A.9)
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can be fixed by demanding their regularity at x ! 0. In particular, for the I7(✏, x) we

obtain

I7(✏, x) =

✓
�
1

3
⇡2H(0,�1;x)� H(0,�1,�1,�1;x) + H(0,�1, 0,�1;x)

◆
✏4 +O(✏5).

(A.10)

This expression, when it is analytic continued to the region x < 0, has a smooth limit for

x ! �1 ( p21 = m2 ),

I7(✏,�1) =
3⇡4

40
✏4 +O(✏5). (A.11)

which has been used in eq. (4.14) .

B d log-forms

In this appendix we collect the coe�cient matrices of the d log-forms

dA = M1 d log(x) +M2 d log(1 + x) +M3 d log(1� x)

+M4 d log(y) +M5 d log(1 + y) +M6 d log(1� y)

+M7 d log(x + y) +M8 d log (1 + x y)

+M9 d log (1� y(1� x � y)) , (B.1)
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B.1 First integral family

For the first integral family we find the following coe�cient matrices:

M1 =

0

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1
4 0 0 1

2 0 1
4 0 0 0 0 1 0 0 0 0 0 �3 �2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

�
1
2 �

1
2 0 0 1

2 �
1
2 0 0 0 0 0 0 0 0 0 0 6 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 �1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 �1 0 0 �1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 �
1
2 0 9

2
11
6 �

4
3

21
8 �1 0 0 �3 1

4 0 0 0 0 0 1 �1 �
1
2 �10 �6 0 0 �

4
3 0 0 2 1 1 3 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

, (B.2)

– 15 –

can be fixed by demanding their regularity at x ! 0. In particular, for the I7(✏, x) we

obtain

I7(✏, x) =

✓
�
1

3
⇡2H(0,�1;x)� H(0,�1,�1,�1;x) + H(0,�1, 0,�1;x)

◆
✏4 +O(✏5).

(A.10)

This expression, when it is analytic continued to the region x < 0, has a smooth limit for

x ! �1 ( p21 = m2 ),

I7(✏,�1) =
3⇡4

40
✏4 +O(✏5). (A.11)

which has been used in eq. (4.14) .

B d log-forms

In this appendix we collect the coe�cient matrices of the d log-forms

dA = M1 d log(x) +M2 d log(1 + x) +M3 d log(1� x)

+M4 d log(y) +M5 d log(1 + y) +M6 d log(1� y)

+M7 d log(x + y) +M8 d log (1 + x y)

+M9 d log (1� y(1� x � y)) , (B.1)

for the master integrals in the first and second integral family.

B.1 First integral family

For the first integral family we find the following coe�cient matrices:

M1 =

0

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1
4 0 0 1

2 0 1
4 0 0 0 0 1 0 0 0 0 0 �3 �2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

�
1
2 �

1
2 0 0 1

2 �
1
2 0 0 0 0 0 0 0 0 0 0 6 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 �1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 �1 0 0 �1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 �
1
2 0 9

2
11
6 �

4
3

21
8 �1 0 0 �3 1

4 0 0 0 0 0 1 �1 �
1
2 �10 �6 0 0 �

4
3 0 0 2 1 1 3 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

, (B.2)

– 15 –

can be fixed by demanding their regularity at x ! 0. In particular, for the I7(✏, x) we

obtain

I7(✏, x) =

✓
�
1

3
⇡2H(0,�1;x)� H(0,�1,�1,�1;x) + H(0,�1, 0,�1;x)

◆
✏4 +O(✏5).

(A.10)

This expression, when it is analytic continued to the region x < 0, has a smooth limit for

x ! �1 ( p21 = m2 ),

I7(✏,�1) =
3⇡4

40
✏4 +O(✏5). (A.11)

which has been used in eq. (4.14) .

B d log-forms

In this appendix we collect the coe�cient matrices of the d log-forms

dA = M1 d log(x) +M2 d log(1 + x) +M3 d log(1� x)

+M4 d log(y) +M5 d log(1 + y) +M6 d log(1� y)

+M7 d log(x + y) +M8 d log (1 + x y)

+M9 d log (1� y(1� x � y)) , (B.1)

for the master integrals in the first and second integral family.

B.1 First integral family

For the first integral family we find the following coe�cient matrices:

M1 =

0

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1
4 0 0 1

2 0 1
4 0 0 0 0 1 0 0 0 0 0 �3 �2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

�
1
2 �

1
2 0 0 1

2 �
1
2 0 0 0 0 0 0 0 0 0 0 6 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 �1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 �1 0 0 �1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 �
1
2 0 9

2
11
6 �

4
3

21
8 �1 0 0 �3 1

4 0 0 0 0 0 1 �1 �
1
2 �10 �6 0 0 �

4
3 0 0 2 1 1 3 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

, (B.2)

– 15 –

Ex :: Family-1

Total Differential          dLog-form

sparse Constant 
matrices

p1

p2 p3

p4
T1

p1

p2 p3

p4
T2

p1

p2 p3

p4
T3

p1

p2 p3

p4
T4

p1

p2 p3

p4
T5

p1

p2 p3

p4
T6

p1

p2 p3

p4
T7

p1

p2 p3

p4
T8

p1

p2 p3

p4
T9

p1

p2 p3

p4
T10

p1

p2 p3

p4
T11

p1

p2 p3

p4
T12

p1

p2 p3

p4
T13

p1

p2 p3

p4
T14

p1

p2 p3

p4
T15

p1

p2 p3

p4
T16

p1

p2 p3

p4
T17

p1

p2 p3

p4
T18

p1

p2 p3

p4
T19

p1

p2 p3

p4
T20

p1

p2 p3

p4
T21

p1

p2 p3

p4
T22

p1

p2 p3

p4
T23

p1

p2 p3

p4
T24

p1

p2 p3

p4
T25

p1

p2 p3

p4
T26

p1

p2 p3

p4
T27

p1

p2 p3

p4
T28

p1

p2 p3

p4

(k2+p1)2

T29

p1

p2 p3

p4
T30

p1

p2 p3

p4

(k2+p1)2

T31

p1

p2 p3

p4
T32

p1

p2 p3

p4

(k1+p2)2

T33

p1

p2 p3

p4

(k2-p1)2

T34
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1.6 Adjoint Equations

1. Total-di↵erential system , Path parametrization

• a posteriori (standard) ::

parametrizing the kinematic variables after deriving the corresponding di↵. eqs.

(as shown before)

• a priori (novel) ::

introducing a parameter-dependent external kinematics, say pi = pi(⌧) (for a

given i) and di↵erentiating w.r.t. to ⌧ .

2. The Wronski matrix W of the homogeneous solutions obeyes the adjoint equation

() B0 = W

3. The homogeneous solutions , maximal cuts of the integrals

4. The maximal cuts ( Baikov parametrization

5. The homogeneous solutions , kernels of iterated integrals

6. IBPs on the cuts , algebraic relations for iterated integrals

) Elliptic-integrals relations from IBPs on the cuts.
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for each master integral. This can be achieved by either knowing the integral at a special

kinematic point or by demanding the absence of unphysical thresholds that appear in the

alphabet 3.4. Below we describe in detail how the boundary constant for each integral was

fixed:
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1.6 Adjoint Equations

1. Total-di↵erential system , Path parametrization

• a posteriori (standard) ::

parametrizing the kinematic variables after deriving the corresponding di↵. eqs.

(as shown before)

• a priori (novel) ::

introducing a parameter-dependent external kinematics, say pi = pi(⌧) (for a

given i) and di↵erentiating w.r.t. to ⌧ .

2. The Wronski matrix W of the homogeneous solutions obeyes the adjoint equation

() B0 = W

3. The homogeneous solutions , maximal cuts of the integrals

4. The maximal cuts ( Baikov parametrization

5. The homogeneous solutions , kernels of iterated integrals

6. IBPs on the cuts , algebraic relations for iterated integrals

) Elliptic-integrals relations from IBPs on the cuts.

2. Integrand Decomposition

Ni1...in =
nX

=1

Ni1...i�1i+1...in Di +�i1...in (2.1)

3. NLO x-section
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4. NLO x-section
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Summary ...
Feasibility of Two-Loop QED Corrections analytically 

…Outlook

Progress in Mu-e Scattering @ 2-loop QED 
==> benefit for e+ e- —> Mu+ Mu- @ 2-loop QED  
==> benefit for p p —> t T @ 2-loop QCD

 

Master Integrals via Differential Equations + Magnus Series

Amplitude decomposition via Adaptive Integrand Decomposition (AID)   
Mu-e scattering :: a first example of 2-loop automation for massive amplitudes

Building the 2-loop amplitude (Form Factors and AID) 

Analytic continuation and Numerical Evaluation of 2-loop MIs

The 1-Loop amplitude and 2-loop renorm. counterterms (GoSam, AID)

Implementing a Subtraction Scheme for NNLO (hinc sunt leones)

MonteCarlo Integration
>> see Piccinini’s talk

Progress with hadronic corrections
>> see Passera’s talk

Fael (2018) + Fael Passera (to appear)
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