Test beam 2018 analysis: summary and updates

A. Principe

12/09/2018, Bologna meeting

Apparatus setup

MUonE configuration @ 02/05

- Strip pitch: 242 um
- Nominal point resolution ~ 35-40 um
- from 4/05: 3 upstream boxes
- from 27/06: no target 2
- from 20/08: new box 8 and 3

Layer problems: some examples

- Almost all layers show inefficiency problems: it's very clear the ASIC structure.
- In the next slides a quantitative efficiency analysis.
- We've correlated some of these problems with the high beam intensity relatively to the apparatus readout.
- Layers 1u and 10x have been changed at the end of August (test beam is running from May).
- In these slides new setup (new boxes) are not shown.

Layer problems: plane 5y

- Situation of 5y trackers (upstream) pre-correction: noisy behavior and shift of central ASIC. Also the resolution at the center is significantly different (sigmas plot).
- As other planes, many dead strips which induce a bad reco of nearest strips.

Layer problems: some solutions

Resolution comparison: test beam 2017 / 2018

- For ~ 187 GeV muon (sigma Highland MS):
 - 8 mm graphite ~ 0.012 mrad
 - 4-5 Si layer of 410 um ~ 0.009 mrad
 - sum in quadrature ~ 0.015 mrad (not so different from pion data TB2017).
- Why sigma is now > 0.10 mrad? Because the intrinsic resolution of apparatus 2018 (pitch 242 um with floating strip, medium downstream arm ~ 50 cm) is:
 - 35 um * sqrt(2) / 50 cm ~ 0.10 mrad

- With our previous dedicated apparatus to multiple scattering measure, we were able to see MSC of pions and muons over 150 GeV.
- Now, the second setup (without target2) should be able to achieve ~0.040-0.045 mrad of point resolution: we might see this difference on analysis of both data sets (next slides)

Efficiencies analysis: hit / event

Layer resolution	% bad hits	Hit eff
$\sigma_{residual}$	Cutted hits % (with mask)	$\frac{\epsilon_{3.28\sigma}}{\chi_x^2 + \chi_y^2 < 26}$
1y 49 μm	1y ~34%	(only chi2,
2x 38 μm	2x ~13%	<u>no mask)</u>
3y 43 μm	3y ~6%	1y 94.6%
4x 40 μm	4x ~3%	2x 95.1%
5y 31 μm	5y ~19%	3y 73.9%
6x 32 μm	6x ~10%	4x 76.8%
7y 26 μm	7y ~7%	5y 98.6%
8x 25 μm	8x ~5%	6x 98.8%
9y 28 μm	9y ~4%	7y 96.1%
10x 40 μm	10x ~65%	8x 96.7%
11y 39 μm	11y ~1%	9y 59.9%
12x 25 μm	12x ~1%	10x 59.2%
13y 31 μm	13y ~8%	11y 98.2%
14x 41 μm	14x ~1%	12x 98.4%
15y 45 μm	15y ~5%	13y 94.8%
16x 48 μm	16x ~16%	14x 94.3%
		15y 82.1%

Event efficiencies downstream planes			
7у	67.5%		
8x	54.4%		
9у	78.2%		
10x	25.0%		
11u	81.3%		
12x	88.6%		
13y	83.8%		
14v	79.5%		
15y	80.6%		
16x	85.2%		

4 runs only T1 2x-3y-4x-5y-6x (m==1) 11111 T: 18.4e+06 incoming muons • Taking in coincidence 3 best layers per view: (11u-12x-13y-14v-15y-16x) 0.81*0.89*0.84*0.80*0.81*0.85 ~ 33% (best event eff)

 With the worst: (7y-8x-9y-10x-15y-16x)

0.68*0.54*0.78*0.25*0.81*0.85 ~ 5% (worst event eff)

16x 83.4%

Data sets of different event efficiency: plot θ_mu θ_e

 Same 18.4e+06 incoming muons and same analysis: we can read this agreement as a relative goodness of estimated event efficiencies.

Data sets of different event efficiency: angle projections

 The angle projection show us a counting depression, in particular for the selection of worst case: MC studied are necessary for comparison.

 Also the distribution of angle between muon and electron shows the same behavior: need of MC confirmation.

Correlation plots: selection variables

- Elasticity (not yet implemented)
- Acoplanarity: different definitions under study
- Track chi2 of secondaries
- Target constraint
- Energy (for calo details see Mattia's slides).

(other details in the backup slides)

Correlation plot θ_{μ} θ_{e} : tracker analysis (no calo)

- Here, an analysis without calorimeter correlation.
- In the second module, after second target, there are only two stations: I created a chi2 with a third "fake" point on target of error of 70 um (from distribution of muon residuals at target). This vertex constraint cleans up pair background, in particular at low angles.
- With setup with only one target, interactions happen in T1: there is a better downstream resolution (~ 1 m).

Correlation plot θ_{μ} θ_{e} : tracker analysis (no calo)

- Here also a chi2 cut for electrons which seems to clean up background after 20 mrad.
- Blue points are ambiguities: pattern reco algorithm is not able to discriminate mu / e; both have good chi2 and roughly same angles. <u>Calorimeter could help in this case to identify electrons</u>.

Correlation plot θ_{μ} θ_{e} : calo analysis, E > 1 GeV

• Here a correlation with calo signal: energy cut of 1 GeV.

 Some blue points on the curve (ambiguity) could be recover to analyze energy deposition of the two tracks.

Correlation plot E_e θ_e (preliminary)

- Clear elastic correlation.
- There are a lot of events under the curve in data and also in Geant.
- Obviously cuts need quantitative MC studies on cut efficiency.

Correlation plot $E_e \theta_e$: energy cut E > 1 GeV

- Here also a chi2 and energy cut: E > 1 GeV. Events around the elastic curve in the previous plots θ_μ θ_e, at large electron angle, are surely "elastic events".
- Calorimeter calibration to check.

Conclusions

- Main analysis update: efficiency analysis and latest correlation plots.
- To do: analyze last setup data with new boxes and study more deeply selection variables, acoplanarity in particular.
- MC is needed to check cut efficiencies and possibly to extract some quantitative conclusion.
- Also it could be important to confirm efficiency analysis and the lack of events that worried us so much.

Backup slides

Trackers alignment: some examples

- Alignment has been achieved with residuals analysis, taking reference planes.
- Residual means (transversal shifts) are within 1 um.
- Correlation res vs hits (rotations along z axis) are within ~ 0.01 mrad.
- Also layer tilts was taken in account, analyzed with correlation res vs hits on the same view.

- A1 = 0 (coplanarity); A2 = 0, pi (coplanarity) and only A2 = 0 for back-to-back particles.
- Second definition of acoplanarity requires to cut at high angle values ~ 0.3 0.4 rad, however its action seems good and stronger than the first one.
- These variables needs further work and also in this case MC will fundamental to study cut efficiency.

Selection variables: track chi2

 Chi2 distribution of secondaries looks like roughly regular, considering that tracking errors for electrons are underestimated.

Selection variables: target constraint

 Residuals between extrapolation of income muon tracks and the one of output tracks of eletrons and muons.

- For muons, the sigmas are ~ 70 um.
- For electron ~ 450 um with long tails probably due to multiple scattering on silicon planes.
- For both the fit gaus means are within
 ~ few microns.
- This variable seems very useful because it looks like well defined and with a clear physical meaning: constraint of interaction vertex.

Selection variables: energy (preliminary)

Calorimeter analysis: tracks at calo position

