

ω_{a} analysis and INFN contribution

Marco Incagli - INFN Pisa

7/sep/2018

The spin equation

- spin vector projection on momentum angle in presence of static B and E fields changes with time according to:

$$
\frac{d}{d t}(\hat{\beta} \cdot \vec{s})=-\frac{e}{m c} \cdot[\left(\frac{g}{2}-1\right) \underbrace{\hat{\beta} \times \vec{B}}_{\text {pitch }}+\underbrace{\left(\frac{g \beta}{2}-\frac{1}{\beta}\right.}_{\text {magic }}) \vec{E}]
$$

- neglecting beam size and oscillations, assuming that all muons momentum is $p_{\text {magic }}=3.01 \mathrm{GeV} / \mathrm{c}$ and is perpendicular to B, than the above expression greatly simplifies to:

$$
\omega_{a}=\omega_{\mu}-\omega_{c}=a_{\mu} \frac{e}{m} B \quad \begin{aligned}
& \omega_{\mu, \mathrm{p}}=\text { precession } \\
& \omega_{c}=\text { cyclotron }
\end{aligned}
$$

- from which:

$$
a_{\mu}=\frac{g_{e}}{2} \frac{m_{\mu}}{m_{e}} \frac{\mu_{p}}{\mu_{e}} \frac{\omega_{a}}{\omega_{p}}=\frac{R_{\mu}}{\lambda-R_{\mu}} \quad ; \quad \mathrm{R}_{\mu}=\frac{\omega_{a}}{\omega_{p}}, \lambda=\frac{\mu_{\mu}}{\mu_{p}}
$$

- the simple expression of previous slide has to be corrected by many effects, like beam dimensions, momentum dispersion, betatron oscillations (radial and vertical), ...

Intensity profile is 120 ns wide with " W " shape (orbit time = 149 ns)

Radial profile corresponding to a ring acceptance $\Delta p=$ $\pm 0.5 \%$; asymmetry due to not perfect kick

g-2: two "different" experiments

- need to measure ω_{a} and ω_{p} with an accuracy of 70 ppb !
- Source of uncertainty on ω_{p} :

	E821 @ Brookhaven	
Source of uncertainty	R01	E989 @ Fermilab Absolute calibration of standard probe Calibration of trolley probes
[ppb]	50	35
Trolley measurements of B_{0}	90	30
Interpolation with fixed probes	50	30
Uncertainty from muon distribution	70	30
Inflector fringe field uncertainty	30	10
Time dependent external B fields	-	-
Others \dagger	-	5
Total systematic error on ω_{p}	100	30

how do we measure ω_{p} - 1

- Pulsed Nuclear Magnetic Resonance on "free" protons:
- Protons are aligned in magnetic field
- Apply a $\pi / 2$ shift by an external pulse
- With the same coil, pick up the Free Induction Decay (FID) signal

- The FID signal is the basis of the magnetic field measurement as a PMT pulse for the energy measurement

how do we measure ω_{p} - 2

- local measurement with a set of 17 probes mounted on a trolley ~ 1 run every 3 days (1 run takes 2-3 hours)
- time interpolation: a set of 378 fixed probes measure the field
- the fixed probes are not at the same location as the trolley probes \rightarrow space interpolation
- absolute calibration: a plunging probe is inserted periodically in the trolley garage to measure the field in the same location (with $\sim \mathrm{mm}$ precision)

How do we measure ω_{p} - 3

$$
a_{\mu}=\frac{\mu_{p}}{\mu_{e}} \frac{m_{\mu}}{m_{e}} \frac{g_{e}}{2} \frac{\omega_{a}}{\tilde{\omega}_{p}}
$$

| Field | $B(r, \theta)$ |
| ---: | :--- |$=\sum_{n=1}^{\infty} r^{n}\left(c_{n} \cos n \theta+s_{n} \sin n \theta\right)$.

The average field seen by the muons is then given by Convolution $\bar{B}=c_{0}+\frac{1}{I_{0}} \sum_{n=1}^{\infty}\left(c_{n} I_{n}+s_{n} J_{n}\right)$.

$$
\begin{aligned}
& I_{n}=\int_{0}^{r_{0}} \int_{0}^{2 \pi} r^{n} M(r, \theta) \cos n \theta r d r d \theta \\
& J_{n}=\int_{0}^{r_{0}} \int_{0}^{2 \pi} r^{n} M(r, \theta) \sin n \theta r d r d \theta
\end{aligned}
$$

wa principle of measurement

- spin rotates faster than momentum in costant B
- positron direction correlated with spin direction
- correlation depends on positron momentum fraction: $y=\frac{p_{e}}{p_{e}^{\text {MAX }}}$

8

Three methods to obtain ω_{a}

- T-method (time): count number of positrons above threshold
- Reconstruct single positron events
- Number of events per (E,t) bin

- Q-method (charge): integrate all the charge, possibly with no (or minimal) threshold
- no need to reconstruct single positrons, avoid clustering
- R-method (ratio): randomly split half the dataset in 2 subsets shifted by \pm half a g-2 period
- build combinations which eliminate the exponential behaviour and leave just a sinusoidal term

T, E-weighted sub-method

- Each energy bin has a different Asymmetry and Phase value
- Fitting each slice separately allows to use positrons down to 500 MeV

The analysis strategy

- 7 independent analysis groups using different Reconstruction algorythms and different Fit methods

Team	Reconstruction	Analysis
UKy	Q	Q
CU	East	T,E
Miss/UIUC	East	T
Europa	West/Europa	T,E
UW	West	T,E
SJTU	West	T
BU	West	R

The analysis strategy

- 7 independent analysis groups using different Reconstruction algorythms and different Fit methods
- 3 Independent Reconstruction algorythms developed (Q , East, West); a $4^{\text {th }}$ one under construction by the Europa team

Team	Reconstruction	Analysis
UKy	Q	Q
CU	East	T,E
Miss/UIUC	East	T
Europa	West/Europa	T,E
UW	West	T,E
SJTU	West	T
BU	West	R

The Europa group

- An analysis group has been formed by italian and english institutions, with specific competences on laser calibration (gain) and tracker reconstruction (muon beam profile)

- General workflow: Basic overview from data to fit
- DST or reduced rples: where are they and what is inside
- Reading software: how to read the ntuples using the maintained code
- Fitting software: git branch and examples on how to fit (and how to blind)
- Correction functions: laser gain functions, lost muons, CBO, pileup, ...

Systematics on ω_{a}

- The goal of the Fermilab experiment is to reduce the systematic error on $\omega_{\mathrm{a}} 180 \rightarrow 70 \mathrm{ppb}$

Category	E821 $[\mathrm{ppb}]$	E989 Improvement Plans	Goal $[\mathrm{ppb}]$	Key element:
Gain changes	120	Better laser calibration low-energy threshold	20	Laser
Lost muons CBO	80	Low-energy samples recorded calorimeter segmentation	40	Calo + Laser
Better collimation in ring				
E and pitch	50	Higher n value (frequency) Better match of beamline to ring Improved tracker	<30	Calo + Laser
Precise storage ring simulations	30	Tracker		
Total	180	Quadrature sum	70	

Systematics on ω_{a}

- The goal of the Fermilab experiment is to reduce the systematic error on $\omega_{\mathrm{a}} 180 \rightarrow 70 \mathrm{ppb}$

Category	E821 $[\mathrm{ppb}]$	E989 Improvement Plans	Goal $[\mathrm{ppb}]$	Key element:
Gain changes	120	Better laser calibration low-energy threshold	20	Laser
Pileup	80	Low-energy samples recorded calorimeter segmentation	40	Calo + Laser
Lost muons CBO	90	Better collimation in ring Higher n value (frequency)	20	Calo + Laser
E and pitch	50	Better match of beamline to ring Improved tracker Precise storage ring simulations	<30	Inflector + Beam
Total	180	Quadrature sum	70	Tracker

Systematics on ω_{a} : phase shift

$$
N(t)=N_{0} e^{-t / \tau}\left[1+A_{\mu} \cos (\omega t+\phi)\right]
$$

If the phase is time dependent ("early-to-late" effect)

$$
\omega t+\phi=\omega t+\phi(t)=\left(\omega+\phi^{\prime}\right) t+\phi_{0}
$$

Frequency shifted!

- since phase and amplitude are energy dependent, any effect that combines together different energies within the same fill can cause a "phase shift"

Gain stability

- Gain variation during fill "mixes" different energies
- Laser system: fundamental tool
- Analysis totally performed by INFN, correction functions in official production

laser gain monitoring system measured $\mathbf{0 . 1 \%}$ perturbation at 30 us

50-150 ppb bias is expected for uncorrected in-fill gain perturbation

Pile up

- Two clusters within $\sim 4 \mathrm{~ns}$ in the same calorimeter can be merged
- Unphysical tail above positron end point
- Pile up probability is higher in the first part of the fill, then muons decay out

- wa-europa group just started working on this (calo+tracker)

Distorting muon life time: lost muons

- Muons with $r>45 \mathrm{~mm}$ wrt magic radius hit the collimators and bend (tipically) inward
- Correction to "wiggle function"

$$
N(t)=N_{0} e^{-t / \tau} \cdot \Lambda(t) \cdot\left(1+A \cos \left(\omega_{a} t+\varphi\right)\right)
$$

Distorting muon life time: lost muons

- Muons with $r>45 m m$ wrt magic radius hit the collimators and bend (tipically) inward
- Correction to "wiggle function"
$N(t)=N_{0} e^{-t / \tau} \cdot\left(1-A_{L M} I(t)\right) \cdot\left(1+A \cos \left(\omega_{a} t+\varphi\right)\right)$
- Lost muons selected as MIP particles which hit 2 (or 3) calos with $\Delta \mathrm{t}=6.2 \mathrm{~ns}$

- Fraction of lost muons for $t>30 \mu s$ is $<10^{-4}$
- wa-europa: Sorbara, Gioiosa, Driutti

\qquad

Beam oscillations

- The beam "oscillates" both radially and vertically, mostly due to the effect of the electrostatic quadrupoles

Bottom Quadrupole Plate

Coherent Betatron Oscillation (CBO)

- Each detector is only at one point around the ring so we sample the radial CBO at the cyclotron frequency $\left(\mathrm{f}_{\mathrm{C}}\right)$

- Beating effect: the frequency measured by any one detector is $f_{C B O}=f_{C}-f_{x}$ (much smaller than both individual freqs)
- Similar effect in vertical direction

Additional systematic: temperature stability

- Laser data are used to correct SiPM response for environmental instabilities: mostly temperature variations (but also pressure, humidity, ...)

time (2.5 days)
- Software: the laser temperature stability is monitored using Local (Atanu) and Source (Nandita + Anna) Monitors
- Hardware: hall temperature control is being improved to reduce Δt

The 60h dataset: 5-par fit 60

- First "challenge": analysis 24-26 april data, 2.5 days between 2 trolley runs, $\sim 10^{9}$ positrons (Run1 $\sim 1.2 \times 10^{10}$; TDR $\sim 1.6 \times 10^{11}$)

Digression: blinding

HARDWARE BLINDING ω_{a}
 the Greg and Joe manual

1. Setting $\boldsymbol{\varepsilon}$ and $\boldsymbol{\delta}$

- General considerations
- 25 ppm within nominal central value: " 40 MHz " $\Rightarrow \pm 1 \mathrm{kHz}$
- range will be adjusts as expected precision of datasets increases
- Dave H: 40.000011 vs 39.999989 too easy to distinguish
- Central value for reconstruction = range midpoint 39.998 MHz
- Procedure

1. Get trained on setting / reading clock synthesizer
2. Choose " $40+\varepsilon$ " in range 39.997 to 39.999 MHz (draw from flat distribution)
3. Choose " $30+\boldsymbol{\delta}$ " in range 29.997 to 29.999 MHz
4. Greg and Joe individually record both values: compare notes
5. Each stores a record for use in monitoring
6. Copies in sealed, signed envelopes sent to UW, UCL admin

Digression: blinding

- Greg and Joe enthusiastically blinding the clock

The 60h dataset: 5-par fit 60

- Back to the analysis: the residuals data-fit show structures
- In particulare typical resonances are observed in the FFT

14-par fit

- By including in the fit also the corrections discussed above (lost muons, beam oscillations, pileup, gain corrections) the residuals show (almost) no structure

First summary of 60h dataset

- With 2.5 days of Run1, the value of wa is determined with a statistical error of 1.27 ppm
- Still work to be done on systematics!

Fit type	5-par	9-par	10-par	14-par
Physics	ω_{a}	$\mathrm{CBO}(\mathrm{N})$	lost muon	vertical waist
Chi2/NDF	$8791 / 3814$	~ 2.30	~ 1.31	$4212 / 3809$
lifetime $(\mu \mathrm{s})$	$64.335(2)$	$64.334(2)$	~ 1.11	~ 1.06
Blinded R (ppm)	$-50.34(1.27)$	$-49.07(1.27)$	$64.424(4)$	$64.424(4)$
CBO lifetime $(\mu \mathrm{s})$	-	$160(12)$	$-49.44(1.27)$	$-49.46(1.27)$
VW lifetime $(\mu \mathrm{s})$	-	-	$155(11)$	$155(11)$

Conclusions

- Analysis structure well defined, both for ω_{p} and for ω_{a}
- Goal is to publish in 2019 (\sim summer) on data collected in 2018 with error similar to BNL \rightarrow important check of central value!
- INFN team well inserted into the analysis and reconstruction flow with leadership and many key-roles in one group (waeuropa) and with other istitutional positions

BACKUP

10-par fit: adding lost muons 60

- The lost muon correction improves the fit at short times
- This correction has no particular time structure, so it appears as a peak at $f=0$ in the FFT $n!n+$

9-par fit

- The effect of Coherent Betatron Oscillation is parametrized as a factor with similar structure as the muon modulated decay
- In fact the CBO shows a frequency which depends on time \rightarrow more exact correction to be applied

14-par fit: adding vertical oscillation 60

R-method

- Ratio method: randomly split dataset in 2 subsets shifted by \pm half a g-2 period
- Build combinations of the 2 subsets which eliminates the exponential behaviour and leaves just a sinusoidal term

$$
u^{ \pm}(t)=N(t \pm \mathrm{T} / 2)=N_{0} e^{-t / \tau \mp T / 2 \tau}\left(1+A \cos \left(\omega_{a} t \pm \omega_{a} \frac{T}{2}+\varphi\right)\right)
$$

$$
\begin{aligned}
& U(t)=u^{+}(t)+u^{-}(t) \\
& R(t)=\frac{N(t)-U(t)}{N(t)+U(t)}
\end{aligned}
$$

$$
R(t)=A \cos \left(\omega_{a} t+\phi\right)-\frac{1}{16}\left(\frac{T}{\gamma \tau}\right)^{2}+(h . o .)
$$

3 parameters fit: less sensitive to slow effects which divide out

Energy Spread After Out-of-fill Correction

In-fill Laser SiPM Pulse Energy Distribution

- Around this energy
expect $\sim 3.1 \%$ resolution from SiPM
- Find 2.8\% including laser fluctuations

