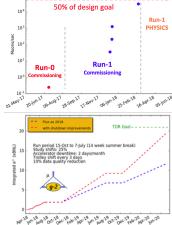


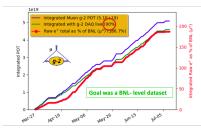
Discussione necessità di calcolo

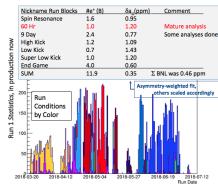
A. Driutti


Riunione *g*-2 con i referee Friday, 7 September 2018

Muon g – 2 Timeline

- and beam dominated by protons.
- Run 1: commissioning + physics run achieved 50% of design flux and recorded 2×BNL stat.
- Run 2: summer shutdown work to increase muon flux by a factor of $1.5 \Rightarrow$ expect to reach 10×BNL stat. by summer 2019
- Run 3: increase muon flux by an additional factor of 1.4 during the summer shutdown \Rightarrow expect to reach 20×BNL stat. by summer 2020 (TDR goal)


Summary Run1 (2018)


- collected ~ 2 × BNL statistics of physics data
- different experimental conditions
 ⇒ 7 datasets
- offline reconstruction workflow requires 2 passes for embedding data quality conditions
- second step includes a data size reduction (accomplished by dropping most of the raw data)

Muon g - 2 Run 1 (2018) Production Summary

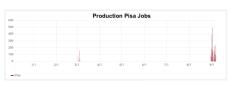
FILE TYPE	ТВ
Total Run 1 recorded DAQ files	1000
Physics Quality Production files 1st pass	1266
Physics Quality Production files 2 nd pass *	633
TOTAL	2899

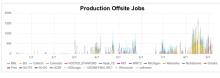
Simulation for Run 1 studies:
 60 TB (truth) + 5 TB (reco)

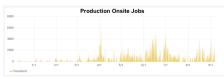
Italian resources usage for Run1 (2018)

- 100 TB of storage at INFN Pisa:
- \sim 2 TB $\,$ to store 60h datasets and MC (reco) compact rootples (production of compact rootples workflow established Aug~18)
- \sim 58 TB to store compact rootples of the other datasets when 2nd pass is completed (Sep/Oct 18)
- \sim 10 TB to store compact rootples from simulation when available (*Oct/Jan 18*)
- ~ 30*TB* disk space for analyzers and to store raw data for tuning/exercising the calibration (*Oct/Jan 18*)

GM2 Run 1 Production Workflow Offline Reconstruction: 1st pass 18k muon/s Compact rootple DQC Offline Reconstruction: Cluster information DAQ: 210 Mb/s to storage 2nd pass Laser monitors information Tracker information MC truth MC reco Lost muons and track-cluster association for DATA and MC but separate files


2018 recap and 2019/2020 requests


	Run1	Run2	Run3
BNL stat.	2	8	10
Raw DAQ data	1000 TB	3600 TB	4500 TB
Raw DAQ data INFN Disk	20 TB	20 TB	20 TB
Reco full DAQ data	650 TB	1800 TB	2200 TB
Reco data compact INFN Disk	60 TB	140 TB	120 TB
Simulation data	100 TB	1000 TB	400 TB
Simulation compact INFN Disk	10 TB	80 TB	30 TB
Users space INFN Disk	10 TB	10 TB	10 TB
Total INFN Disk Estimate	100 TB*	250 TB	180 TB


- reconstructed DAQ dataset and simulated data store as compact rootples tailored for ω_a analysis and gain studies with \sim 90% size reduction w.r.t. production files
- 10 TB/year disk space for users
- 20 TB/year of raw data to tune/exercise the calibration
 - * 100 TB for 2018 already assigned

Pisa Grid Usage

- We are running production opportunistically on the Pisa Grid (first Italian site accessible by FIFE tools):
 - 13 Feb 2018: first job submitted by the Production Team in Pisa
 - 20 Feb 2018: completed test using single-core queue added Pisa to the Offsite list
 - 30 Aug 2018: fixed pilot mapping issue and set up the multi-core queue
- Thanks to Enrico and Ken!

Summary and Conclusion

- for the analysis of the Run 1 data we have been assigned 100 TB: we established the workflow for the compact rootples and we start using this space.
- the request for 2019 (Run 2) is **250 TB of storage space**: 220 TB for compact rootples plus 30 TB for users and to test/improve the whole gain correction chain from raw data.
- the multi-core jobs in the Pisa grid are now enabled. Big accomplishment! For now, we are planning to keep running opportunistically.