Fragment is univocally determined by Z and A

Fragment Identification

performed @200 MeV/u (hadrontherapy) and 700 MeV/u (radioprotection)

Charge determination (Z):

$$-\frac{dE}{dx} = \frac{\rho \cdot Z}{A} \frac{4\pi N_A m_e c^2}{M_U} \left(\frac{e^2}{4\pi\epsilon_0 m_e c^2}\right)^2 \frac{z^2}{\beta^2} \left[\ln\left(\frac{2m_e c^2 \beta^2}{I \cdot (1-\beta^2)}\right) - \beta^2\right]$$
SCN

Number of mass determination (A):

Fit Methods

STANDARD χ^2 and **ALM**

Roma, 28/8/2018

1

p Resolution @ 200 MeV/u

Roma, 28/8/2018

Fluka Simulation: ¹⁶O (200 MeV/u) on C_2H_4 target

2

A determination @200 MeV with Magnet 10 cm (example of Carbon)

Possibility to select and remove these events with a χ^2 cut on the Fit methods

700 MeV/u: Problem 1 (example of ¹²C)

700 MeV/u: Problem 2

higher energy fragment \rightarrow lower Energy deposition but similar tof resolution (see pag 3)

Fragments with higher $\beta \rightarrow$ lower Tof \rightarrow lower relative resolution

p Resolution @ 700 MeV/u

(%) d/(d)o At 200MeV/n, all elements are in the "decreasing" part, Particles: dominated by MS contribution; -He -9Be heavy-elements have high p so almost at minimum 7Li look at the trend not at 12 -11B -12C the resolution value in (that is at lower-p), MS not so high anymore; 160 14N this plot 10 At 700MeV/n, all in region dominated by spatial resolution; 8 light elements (steeper growth, lower-p minimum) have 8 low p; still close to the minimum heavy elements (grows slower, higher-p minimum) have higher p but still close to the minimum 1.1.1 15 ñ 10 p (GeV) e(p)/p_{oin} 0.05 ຊື່ ເ.35 ອີ 0.04 0.04 0.04 0.03 0.035 0.025 0.03 0.03 9.02 0.025 0.02 SC.0 0.015 200 MeV/n 350 MeV/n 700 MeV/n 0.015E 0.01 0.01 0.01p Resolution ~ 3% 0.005 0.005 0, 12 14 20 р.__[QəV Peolosy p_[Qsi latteo Franchini - INFN & University of Bologna FOOT Bologna 2018 4

9

@ 700 MeV/u p resolution is better due to the lower contribution of the Multiple Scattering

Number of Mass Resolution @700 MeV

Quantity	Resolution Magnet 7 cm	Resolution Magnet 10 cm				
Tof (ps)	70 (C) – 140 (H)	70 (C) – 140 (H)	٦			
E _{kin} (%)	1.5	1.5	ŀ			
р (%)	3.5	2.5	J			
Setup (SCN & CAL at 2.9 m)						

Same as @200 MeV/u (see pag 3)

Mass reconstructed with Tof + Tracker Method

A determination @700 MeV with Magnet 10 cm (example of Carbon)

Carbon Isotopes separation @700 MeV

wrong charge assignment < %</pre>

14

Z = 3

Z = 5

Z = 6Z = 7 Z = 8

9

z

8

2.0% 2.0%

Δ

Z Reconstruction @200 & 700 MeV with MSD

MeV

Fluka simulation: ¹⁶O (200 &700 MeV/u)→ C₂H₄

450 μm of Silicon Peaks resolved @200 & 700 MeV/u No smearing included

Possibility to combine the Z determination with the SCN

Summary

Z determination:

□ ¹⁶O (200 MeV/u & 700 MeV/u): Z Resolution in the range [2-5]% → wrong charge identification less than percent (SCN + MSD)

□ A determination

@200 MeV/u: FIT METHOD with SCN, TRACKER and CALO (Tof, p, Ekin)

200 MeV/u	∆p/p	ΔA/A (example of C)	
Magnet 7 cm	6%	3.5%	
Magnet 10 cm	4%	3.0%	→ Good Isotope se

• @700 MeV/u: FIT method possible only on 20% of statistics (missed energy)

700 MeV/u	∆p/p	ΔA/A (example of C)	
Magnet 7 cm	3.5%	4.0%	
Magnet 10 cm	2.5%	3.0%	→ Isotope separati

Backup slides

Fraction on deposited energy @ 200 MeV/u

A Reconstruction and fit

TOF (β) – TRACKER (p)	TOF (β)– CALO (E _{kin})	TRACKER (p) – CALO (T)
$A_1 = \frac{m}{U} = \frac{p}{U\beta\gamma}$	$A_2 = \frac{m}{U} = \frac{E_{kin}}{U(\gamma - 1)}$	$A_3 = \frac{m}{U} = \frac{p^2 - E_{kin}^2}{2E_{kin}}$

Standard χ² Fit

Taking into account the correlation between A₁, A₂ and A₃

$$f = \left(\frac{(tof_{reco} - t)}{\sigma tof_{reco}}\right)^2 + \left(\frac{(p_{reco} - p)}{\sigma p_{reco}}\right)^2 + \left(\frac{(T_{reco} - T)}{\sigma T_{reco}}\right)^2 + (A_1 - A - A_2 - A - A_3 - A)\begin{pmatrix}C_{00} & C_{01} & C_{02}\\C_{10} & C_{11} & C_{12}\\C_{20} & C_{21} & C_{22}\end{pmatrix}\begin{pmatrix}A_1 - A - A_2 - A - A_3 -$$

$$C = (A \cdot A^{T})^{-1} \quad A = \begin{pmatrix} \frac{\partial A_{1}}{\partial t} dt & \frac{\partial A_{1}}{\partial p} dp & 0\\ \frac{\partial A_{2}}{\partial t} dt & 0 & \frac{\partial A_{2}}{\partial T} dT\\ 0 & \frac{\partial A_{3}}{\partial p} dp & \frac{\partial A_{3}}{\partial T} dT \end{pmatrix}$$

Augmented LagrangianFit (ALM)

$$\tilde{\mathcal{L}}(\vec{x};\boldsymbol{\lambda},\mu) \equiv f(\vec{x}) - \sum_{a} \lambda_{a} c_{a}(\vec{x}) + \frac{1}{2\mu} \sum_{a} c_{a}^{2}(\vec{x}).$$
¹⁹

A reconstruction efficiency

Efficiency

Reconstruction efficiency ~ 70-80 % depending on the fragment