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Outline

• Recent results on CMB lensing estimation with higher-order 
effects and implications fro cross-correlation

• Updates from Flagship team

• Summary of light cone comparison project

• Updates on covariances

• Updates on simulation activity in non-standard cosmology
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Higher-order CMB lensing in a nutshell

Fabbian et al. (2018)
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Higher-order corrections: non-Gaussianities
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3. The top row shows
the tree-level LSS bispectrum and the bottom row shows the non-linear fit of Scoccimarro and Couchman [41] (“SC”). The left plots show the
post-Born contributions, the middle plots the large-scale structure contributions and the right plots the cancellations that occur due to negative
contributions from the post-Born bispectrum in approximately flattened configurations, i.e. L

1
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. For approximately equilateral
configurations, i.e. L
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2
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3

, we find an enhancement of the total bispectrum. The grey dashed line denotes the b = 0 contour. In
the equilateral limit, the tree-level LSS bispectrum is enhanced by a factor of ⇠ 2 by the post-Born corrections and the non-linear SC LSS
bispectrum by a factor of ⇠ 1.5.

This agrees with the galaxy lensing result of Ref. [10] when restricted to observing the convergence (trace of the distortion
tensor) directly.

Non-linear structure growth will also give additional contributions from the large-scale structure bispectrum, which in the
Limber approximation has the form [42]
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The potential bispectrum on the right-hand side of this equation can be approximated by the tree-level result for the fractional
matter density perturbations [43]:

b���(k1, k2, k3;�) = 2F2(k1,k2; z)P��(k1, z(�))P��(k2, z(�)) + cyc. perm., (4.8)
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and k2 (k, z) ⇡ ��(z)�(k, z) with �(z) ⇡ k2
p
P  (k, z)/P��(k, z) approximately independent of k. The baseline tree-level

result has A = B = C = 1 in Eq. (4.9), so that F2 is independent of redshift, but even in this case we use the non-linear P��

from halofit to improve accuracy [41]. We also consider extended fitting formulae for A, B and C from Scoccimarro and
Couchman [41] (denoted “SC”) to assess the order of magnitude of fully non-linear corrections beyond tree level5

5 We use a dewiggled form for n ⌘ d lnP��,lin/d ln k in the fitting function following Ref. [44]. Ref. [44] (“GM”) also provide updated fits, but they are
not validated at high redshift and may behave in an unphysical way there, so we restrict to the original fit of Ref. [41]. Using the updated fits would slightly
increase the LSS bispectrum signal, but not change results qualitatively. At L = 1000 the equilateral lensing bispectrum is enhanced by ⇡ 2⇥ compared
to tree level using the SC fit, and ⇡ 2.5⇥ in the GM fit, but the difference is much less for folded configurations (where the non-linear enhancement at
L
1

= 1000 is less than 20%).
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Pratten & Lewis (2016)

Beck, Fabbian, Errard (2018)
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Lensing reconstruction basis
• Lensing is a convolution in harmonic-domain

trative purposes, we use a flat! cold dark matter cosmology
throughout with parameters "c ¼ 0:3, "b ¼ 0:05,
"! ¼ 0:65, h ¼ 0:65, n ¼ 1, !H ¼ 4:2" 10#5 and no gravita-
tional waves.

2. LENSING

Weak lensing by the large-scale structure of the universe
remaps the primary temperature field #ðn̂nÞ ¼ DTðn̂nÞ=T and
dimensionless Stokes parameters Qðn̂nÞ and Uðn̂nÞ as (Blan-
chard & Schneider 1987; Bernardeau 1997; Zaldarriaga &
Seljak 1998)

#ðn̂nÞ ¼ ~##ðn̂nþ dðn̂nÞÞ ;

ðQ' iUÞðn̂nÞ ¼ ~ðQðQ' i ~UUÞ½n̂nþ dðn̂nÞ) ; ð1Þ

where n̂n is the direction on the sky, tildes denote the
unlensed field, and dðn̂nÞ is the deflection angle. It is related
to the line-of-sight projection of the gravitational potential
$ðx;DÞ as d ¼

D

",

"ðn̂nÞ ¼ #2

Z
dD

ðDs #DÞ
DDs

$ðDn̂n;DÞ ; ð2Þ

where D is the comoving distance along the line of sight in
the assumed flat cosmology and Ds denotes the distance to
the last-scattering surface. In the fiducial cosmology the rms
deflection is 2<6 but its coherence is several degrees.

We will work mainly in harmonic space and consider suf-
ficiently small sections of the sky such that spherical har-
monic moments of order ðl;mÞ may be replaced by plane
waves of wavevector l. The all-sky generalization will be
presented in a separate work (T. Okamoto & W. Hu 2002,
in preparation). In this case, the temperature, polarization,
and potential fields may be decomposed as
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where ’l ¼ cos#1ðx̂x x l̂lÞ. Lensing changes the Fourier
moments by (Hu 2000b)
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where ’l 0l * ’l 0 # ’l , L ¼ l # l 0, and

Wðl;LÞ ¼ #½l xL)"ðLÞ : ð5Þ

Here !# ¼ ## ~## for example. In Figure 1, we show a toy
example of the effect of lensing on the temperature and
polarization fields (see also Benabed et al. 2001). The effect
on the E-polarization is similar to that of the temperature

and reflects the fact that cos 2’l 0l + 1 for L5 l, where the
lens is smooth compared with the field. Even in the absence
of an unlensed B-polarization, lensing will generate it. The
lensing structure differs since sin 2’l 0l + 0 for L5 l. This
fact will ultimately lead to a different range in L of sensitiv-
ity to " from the various fields.

Since the unlensed fields and potential perturbations are
assumed to be Gaussian and statistically isotropic, the stat-
istical properties of the lensed fields may be completely
defined by the unlensed power spectra

h~xx,ðlÞ~xxðl 0Þi * ð2#Þ2!ðl # l 0Þ~CCxx0

l ;

h",ðLÞ"ðL0Þi * ð2#Þ2!ðL# L0ÞL#2Cdd
L ;

where x ¼ #, E, B and we have chosen to express the poten-
tial power spectrum with a weighting appropriate for the
deflection field dðn̂nÞ. Under the assumption of parity
invariance

~CC#B
l ¼ ~CCEB

l ¼ 0 ; ð6Þ

and in the absence of gravitational waves and vorticity
~CCBB
l ¼ 0. The peak in the logarithmic power spectrum

L2Cdd
L =2# at L - 30 40 defines the degree-scale coherence

of the deflection angles.
Finally, we define the power spectra of the observed tem-

perature and polarization fields as

hx,ðlÞxðl 0Þi * ð2#Þ2!ðl # l 0ÞCxx0

l ; ð7Þ

where the power spectra include all sources of variance to
the fields including detector noise and residual foreground
contamination added in quadrature. We will include Gaus-
sian random detector noise of the form (Knox 1995)
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CEE
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!!!
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elðlþ1Þ$2=8 ln 2 ; ð8Þ

where DT ;P parameterizes white detector noise, here in units
of lK rad, TCMB ¼ 2:728" 106 lK, and $ is the FWHM of
the beam. We will often assume DP ¼

ffiffiffi
2

p
DT as appropriate

for fully polarized detectors. In Figure 2, we compare the
signal and noise contributions to the total power spectra for
the Planck satellite experiment3 (minimum variance channel
weighting from Cooray & Hu 2000; DT + 27 lK arcmin,
DP + 40

ffiffiffi
2

p
lK arcmin, $ + 70) and a near-perfect reference

experiment (DT ¼ DP=
ffiffiffi
2

p
¼ 1 lK arcmin and $ ¼ 40). In

general, where the signal exceeds the noise power spectrum
of a field, there is sufficient signal-to-noise ratio for map-
ping. When this is not the case, a statistical detection of the
signal may still be possible. The Planck experiment is on the
threshold of being able to map the E-polarization. The
reference experiment can map all three fields to l - 2000.

3. MINIMUM VARIANCE ESTIMATORS

As can be seen from equation (5), lensing mixes and there-
fore correlates the Fourier modes across a range defined by

3 See http://astro.estec.esa.nl/Planck.
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experiment (DT ¼ DP=
ffiffiffi
2

p
¼ 1 lK arcmin and $ ¼ 40). In

general, where the signal exceeds the noise power spectrum
of a field, there is sufficient signal-to-noise ratio for map-
ping. When this is not the case, a statistical detection of the
signal may still be possible. The Planck experiment is on the
threshold of being able to map the E-polarization. The
reference experiment can map all three fields to l - 2000.

3. MINIMUM VARIANCE ESTIMATORS

As can be seen from equation (5), lensing mixes and there-
fore correlates the Fourier modes across a range defined by

3 See http://astro.estec.esa.nl/Planck.
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the power in the deflection field Cdd
L (Hu 2000b). Consider

averaging over an ensemble of realizations of the tempera-
ture and polarization fields but with a fixed lensing field.
The two-point correlation of the modes takes the form

hxðlÞx0ðl 0ÞiCMB ¼ f!ðl; l 0Þ"ðLÞ ; ð9Þ

where x; x0 ¼ !;E;B and L ¼ l þ l 0. We have assumed
l 6¼ %l 0 and will use the subscript ! to distinguish between
choices of the xx0 pairing, e.g., ! ¼ !!. The correlation
returns the value of the deflection potential with weightings
f! that depend on the unlensed power spectra of equation
(7), which are given explicitly in Table 1.

The two-point correlations of the CMB Fourier modes
themselves cannot be used to reconstruct the deflection
potential since " is also statistically isotropic so that in the
true ensemble average h"ðLÞi ¼ 0. Equation (9) does sug-
gest however that an appropriate average over pairs of mul-
tipole moments can be used to estimate the deflection field
dðn̂nÞ.

Let us define a general weighting of the moments

d!ðLÞ ¼
A!ðLÞ
L

Z
d2l1

ð2#Þ2
xðl1Þx0ðl2ÞF!ðl1; l2Þ ; ð10Þ

Fig. 1.—Exaggerated example of the lensing effect on a 10& ' 10& field. Top, from left to right: Unlensed temperature field, unlensed E-polarization field,
spherically symmetric deflection field dðnÞ. Bottom, from left to right: Lensed temperature field, lensed E-polarization field, lensed B-polarization field. The
scales for the polarization and temperature fields differ by a factor of 10. [See the electronic edition of the Journal for a color version of this figure.]

Fig. 2.—Power spectra of the CMB temperature and polarization fields
compared with the detector noise of the Planck satellite and a nearly perfect
experiment with a noise level of DT ¼ DP=

ffiffiffi
2

p
¼ 1 lK arcmin and a beam

of $ ¼ 40 (thick long-dashed line for polarization, thin long-dashed line for
temperature). The Planck experiment has sufficient signal-to-noise ratio to
map the ! field but can only marginally map the E-polarization field; the
nearly perfect experiment canmap all three fields to l ¼ 2000.
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where l2 ¼ L" l1 and the normalization

A!ðLÞ ¼ L2

"Z
d2l1

ð2"Þ2
f!ðl1; l2ÞF!ðl1; l2Þ

#"1

ð11Þ

is chosen so that

hd!ðLÞiCMB ¼ dðLÞ % L#ðLÞ : ð12Þ

In general there are six estimators corresponding to the 3!
pairs of !, E, B. In the assumed cosmology, where gravita-
tional wave perturbations are negligible compared with den-
sity perturbations, ! ¼ BB has vanishing signal-to-noise
ratio, effectively reducing the estimators to five.

We can optimize the filter F! by minimizing the variance
hd&! ðLÞd!ðLÞi, subject to the normalization constraint

F!ðl1; l2Þ ¼
Cx0x0

l1
Cxx

l2
f!ðl1; l2Þ " Cxx0

l1
Cxx0

l2
f!ðl2; l1Þ

Cxx
l1
Cx0x0

l2
Cx0x0

l1
Cxx

l2
" ðCxx0

l1
Cxx0

l2
Þ2

: ð13Þ

This filter takes on simple forms for two common cases: if
x ¼ x0, as in the case of ! ¼ !!, EE, andBB,

F!ðl1; l2Þ !
f!ðl1; l2Þ
2Cxx

l1
Cxx

l2

; ð14Þ

if ~CCxx0
l ¼ 0, as in the case of ! ¼ !B and EB,

F!ðl1; l2Þ !
f!ðl1; l2Þ
Cxx

l1
Cx0x0

l2

: ð15Þ

The noise properties of these estimators follow from

hd&! ðLÞd$ðL
0Þi ¼ ð2"Þ2%ðL" L0Þ½Cdd

L þN!$ðLÞ) ; ð16Þ

where

N!$ðLÞ ¼ L"2A!ðLÞA$ðLÞ
Z

d2l1

ð2"Þ2
F!ðl1; l2Þ

!
F$ðl1; l2Þ

* C
x!x$
l1

C
x0!x

0
$

l2
þ F$ðl2; l1ÞC

x!x0$
l1

C
x0!x$
l2

"
: ð17Þ

Recall that the xx power spectra account for both the cos-
mic variance of the fields and the noise variance of the
experiment. Notice that for the minimum variance filter

N!!ðLÞ ¼ A!ðLÞ : ð18Þ

In Figure 3, we compare the signal and noise power spectra
for the Planck experiment and the reference experiment
defined in x 2. Recall that true mapping is possible when the
signal exceeds the noise spectrum. For the Planck experi-

ment, !! provides the best estimator, reflecting the fact
that Planck will not be able to produce true maps of the
polarization modes. Furthermore, the signal-to-noise ratio
is highest at Ld200, reflecting the fact that the modes are
mainly correlated across DL + 60, where the deflection
power spectrum peaks.

For the reference experiment, all five estimators have suf-
ficient signal-to-noise ratio to produce maps at Ld200. The
EB estimator has the best signal-to-noise ratio and allows
for mapping to Ld1000. The reason is that there is no noise
variance contributed by an unlensed B-field. Furthermore,
the signal intrinsically comes from higher L. A B-field at a
wavenumber l cannot be generated from neighboringmodes
l 0 + l from the low-L deflection field because of the sin term
in the lensing kernel (see eq. [5]). Thus, the signal-to-noise
ratio is relatively higher at high L in the EB estimator.

For experiments that are intermediate in sensitivity
between Planck and the reference experiment, the five esti-
mators of the deflection field have comparable signal-to-
noise ratio and may be used to cross-check each other. At
high L where the individual estimators are noise limited,
combining the estimators as

dmvðLÞ ¼
X

!

w!ðLÞd!ðLÞ ð19Þ

Fig. 3.—Deflection signal (dd ) and noise power spectra of the quadratic
estimators and their minimum variance (mv) combination: (a) Planck
experiment; (b) reference experiment. As the sensitivity of the experiment
improves, the best quadratic estimator switches from !! to EB. Only the
EB-estimator can reconstruct the mass distribution at Le200.

TABLE 1

Minimum Variance Filters

! f!ðl1; l2Þ

!! ........ ~CC!!
l1

ðL x l1Þ þ ~CC!!
l2

ðL x l2Þ
!E ........ ~CC!E

l1
cos’l1 l2 ðL x l1Þ þ ~CC!E

l2
ðL x l2Þ

!B ........ ~CC!E
l1

sin 2’l1 l2 ðL x l1Þ
EE......... ½~CCEE

l1
ðL x l1Þ þ ~CCEE

l2
ðL x l2Þ) cos 2’l1 l2

EB......... ½~CCEE
l1

ðL x l1Þ " ~CCBB
l2

ðL x l2Þ) sin 2’l1 l2

BB......... ½~CCBB
l1

ðL x l1Þ þ ~CCBB
l2

ðL x l2Þ) cos 2’l1 l2
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I. INTRODUCTION

As Cosmic Microwave Background (CMB) photons
traverse the Universe, their paths are gravitationally de-
flected by large-scale structures. This gravitational lens-
ing of the CMB can be used to reconstruct maps of the in-
tegrated deflections from density fluctuations in the Uni-
verse, and the growth of structure. Gravitational lensing
of the CMB has been detected in the CMB tempera-
ture anisotropy in several ways: in the smoothing of the
acoustic peaks of the temperature power spectrum [1–3],
in cross-correlations with tracers of the large-scale mat-
ter distribution [4–10], and in the four-point correlation
function of CMB temperature maps [11–14]. Measur-
ing CMB polarization anisotropy will enable much higher
signal-to-noise lensing maps, thus improving the recon-
struction of the projected mass distribution. However,
this measurement is challenging due to the faintness of
the polarized signal.
The South Pole Telescope (SPT) collaboration recently

reported a detection of lensed polarization using the
cross-correlation between maps of CMB polarization and
sub-mm maps of galaxies from Herschel/SPIRE [15]. A
companion paper has confirmed these results using Po-

larbear data [16]. This cross-correlation is immune to
several instrumental systematic effects, but it is only sen-
sitive to a fraction of the redshift range over which CMB
photons are deflected. Furthermore, the cosmological in-
terpretation of this measurement requires assumptions
about the relation of sub-mm galaxies to the underlying
mass distribution [17].
In this Letter, we present the direct detection of gravi-

tational lensing of the polarized CMB using data from the
Polarbear experiment. We present power spectra of
the lensing deflection field for two four-point estimators
using only CMB polarization data, and tests for spurious
systematic contamination of these estimators. We com-
bine the two estimators to increase the signal-to-noise of
the lensing detection.

II. CMB LENSING

Gravitational lensing affects CMB polarization by de-
flecting photon trajectories from a direction on the sky
n + d(n) to a new direction n. In the flat-sky approxi-
mation, this implies that the lensed and unlensed Stokes
parameters are related by

(Q± iU)(n) = (Q̃± iŨ)(n+ d(n)), (1)

where Q̃ or Ũ denotes a primordial Gaussian CMB po-
larization map, Q and U are the observed Stokes pa-
rameters, and d(n) is the lensing deflection field. CMB
polarization defined in Eq. (1) is rotation-invariant and
can be decomposed into electric- (E-) and magnetic-like
(B-) modes [18].
Taylor expanding Eq. (1) to first order in the deflection

angle reveals that the off-diagonal elements of the two-

point correlation functions of E- and B-modes are propor-
tional to the lensing deflection field, d(n). Quadratic es-
timators take advantage of this feature to measure CMB
lensing [19–21]. The two lensing quadratic estimators for
CMB polarization are:

dEE(L) =
AEE(L)

L

∫
d2l

(2π)2
E(l)E(l′)

C̃EE
l L · l

CEE
l CEE

l′
cos 2φll′ ,

(2)
and

dEB(L) =
AEB(L)

L

∫
d2l

(2π)2
E(l)B(l′)

C̃EE
l L · l

CEE
l CBB

l′
sin 2φll′ .

(3)
In Eqs. (2, 3), l, l′, and L are coordinates in Fourier
space with L = l + l′. The angular separation between
l and l′ is φll′ , C̃EE

l is the theoretical primordial power
spectrum, CEE

l and CBB
l are theoretical lensed power

spectra. The estimators are normalized by AEE(L) and
AEB(L) so that they recover the input deflection power
spectrum [21].
The power spectrum of these estimators is:

⟨dα(L)d
∗

β(L
′)⟩ = (2π)2δ(L− L

′)(Cdd
L +N (0)

αβ (L) (4)

+ higher-order terms).

Here, α and β are chosen from {EE,EB}, however we do
not use α = β = EE as our focus is on the most direct
probe of CMB lensing represented by the conversion of E -
to-B patterns. The four-point correlation function takes
advantage of the fact that gravitational lensing converts
Gaussian primary anisotropy to a non-Gaussian lensed
anisotropy. When calculating this non-Gaussian signal,
however, there is a “Gaussian bias” term N (0) in the
four-point correlation that has to be subtracted. The
Gaussian bias is zero when α ̸= β (i.e., ⟨dEE(L)d∗EB(L

′)⟩)
because ⟨E(l)B(l′)⟩=0 under the assumption of parity
invariance. However, the Gaussian bias is much larger
than the lensing power spectrum in the α = β case. The
Gaussian bias can be estimated, and removed, in several
ways [11, 13, 14]; the approach used in this Letter is
described in the Data Analysis section.

III. OBSERVATIONS AND CALIBRATION

The Polarbear experiment on the Huan Tran Tele-
scope is located at the James Ax Observatory in North-
ern Chile on Cerro Toco at West longitude 67◦47′10.4′′,
South latitude 22◦57′29.0′′, at elevation of 5.20 km. The
details of the instrument are described in Kermish et
al. [22]. The 1,274 polarization-sensitive transition-edge
sensor bolometers are sensitive to a spectral band cen-
tered at 148 GHz with 26% fractional bandwidth [23].
The 3.5 meter aperture of the telescope primary mir-
ror produces a beam with a 3.5′ full width at half
maximum (FWHM). Three approximately 3◦ × 3◦ fields
centered at right ascension and declination (23h02m,

the power in the deflection field Cdd
L (Hu 2000b). Consider

averaging over an ensemble of realizations of the tempera-
ture and polarization fields but with a fixed lensing field.
The two-point correlation of the modes takes the form

hxðlÞx0ðl 0ÞiCMB ¼ f!ðl; l 0Þ"ðLÞ ; ð9Þ

where x; x0 ¼ !;E;B and L ¼ l þ l 0. We have assumed
l 6¼ %l 0 and will use the subscript ! to distinguish between
choices of the xx0 pairing, e.g., ! ¼ !!. The correlation
returns the value of the deflection potential with weightings
f! that depend on the unlensed power spectra of equation
(7), which are given explicitly in Table 1.

The two-point correlations of the CMB Fourier modes
themselves cannot be used to reconstruct the deflection
potential since " is also statistically isotropic so that in the
true ensemble average h"ðLÞi ¼ 0. Equation (9) does sug-
gest however that an appropriate average over pairs of mul-
tipole moments can be used to estimate the deflection field
dðn̂nÞ.

Let us define a general weighting of the moments

d!ðLÞ ¼
A!ðLÞ
L

Z
d2l1

ð2#Þ2
xðl1Þx0ðl2ÞF!ðl1; l2Þ ; ð10Þ

Fig. 1.—Exaggerated example of the lensing effect on a 10& ' 10& field. Top, from left to right: Unlensed temperature field, unlensed E-polarization field,
spherically symmetric deflection field dðnÞ. Bottom, from left to right: Lensed temperature field, lensed E-polarization field, lensed B-polarization field. The
scales for the polarization and temperature fields differ by a factor of 10. [See the electronic edition of the Journal for a color version of this figure.]

Fig. 2.—Power spectra of the CMB temperature and polarization fields
compared with the detector noise of the Planck satellite and a nearly perfect
experiment with a noise level of DT ¼ DP=

ffiffiffi
2

p
¼ 1 lK arcmin and a beam

of $ ¼ 40 (thick long-dashed line for polarization, thin long-dashed line for
temperature). The Planck experiment has sufficient signal-to-noise ratio to
map the ! field but can only marginally map the E-polarization field; the
nearly perfect experiment canmap all three fields to l ¼ 2000.
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Name TalkName TalkGiulio Fabbian CMB lensing and neutrino science

Quadratic CMB lensing estimators in a nutshell

• Non-Gaussianity in deflection field biases CMB lensing reconstruction with 
quadratic estimators (Böhm+2016)

• Only non-linear LSS bispectrum included so far

• Exploit our numerical simulation setup to isolate single sources of bias at all scales

• Lens same primordial CMB realizations with different combination of deflection 
fields

• Clean measurements of reconstruction biases
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Reconstruction biases vs reconstruction channel

• Julien + Non-gaussianities w/ MC

Beck, Fabbian, Errard 
(2018)
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Biases on cosmological parameters

Beck, Fabbian, Errard 
(2018)
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Neutrino mass estimation

• Shape of the bias highly dependent on the maximum multipole included in the 
lensing reconstruction

• Bias on cosmological parameters at 1-2 sigma: neutrino mass more affected!

• Combination of data set potentially more robust but possible inconsistencies 
due to biases

Beck, Fabbian, Errard 
(2018)
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Biases for cross-correlation studies

• Cross-correlation with high-redshift tracer: could reduce the cross-
correlation bias

• Correlation with low-redshift tracer: enhance bias (e.g. z<0.5) 12

FIG. 7. Scaling with redshift of the LSS (SC fit, dotted) and post-Born (solid, positive, and dashed, negative) contributions to the convergence
bispectrum for equilateral and folded shapes. At low redshifts the post-Born contributions are much smaller than LSS, but for CMB lensing
(z = z⇤) they are coincidentally of comparable order of magnitude on relevant scales. The bispectra here are plotted normalized by the
convergence power to remove the total growth in lensing signal with redshift, so the curves represent a measure of the amount of non-
Gaussianity.

where

F(L1, L2) ⌘ �
Z �s

0
d��2

[W (�,�s)�(z(�))]
3
P��(L1/�, z(�))P��(L2/�, z(�)). (4.12)

The squeezed structure of Eq. (4.10) is then inherited by the convergence bispectrum,

bLSS (L1, L,'L) =

✓
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where L1 ⌧ L, with the short mode L ⌘ (L2 �L3)/2. In the post-Born case we have analogously

bPost-Born(L1, L,'L) = �2Ms(L1, L)+
dMs(L,L1)

d lnL
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✓
�2Ms(L,L1)� 2Ms(L1, L) +
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d lnL

◆
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✓
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L2

◆
.

(4.14)
On the scales of interest the coefficients of the monopole and quadrupole part of the post-Born spectrum are both negative, but
in Eq. (4.13) they are both positive. We can therefore expect a partial cancellation between the contributions to the bispectrum.
Although the approximate results of Eqs. (4.10) and (4.13) are based on a series expansion, since the next term is O(L2

1/L
2
)

they provide quite a good qualitative fit to the full result for L & 2L1.
Whether there is total reduction depends on the particular triangle shape, since the relative size of the quadrupolar contribution

is much larger in the post-Born case. In the particular case where the long and short modes are orthogonal (cos 2' = �1)
we have the post-Born contribution b ⇡ 2Ms(L,L1) which is positive, and LSS contribution b ⇡ 13

7 F(L1, L), also
positive. However, when the modes are parallel (cos 2' = 1) they have opposite sign: b ⇡ �4Ms(L1, L)� 2Ms(L,L1) +

2

dMs(L,L1)
d lnL , b ⇡ (3 � d lnF(L,L1)

d lnL )F(L,L1). Contributions for cos 2' ⇠ 1 are larger than cos 2' ⇠ �1 because the
monopole and quadrupole parts contribute with the same sign, and hence the net effect is that the post-Born bispectrum reduces
the total signal compared to that from the tree-level large-scale structure bispectrum alone. This is illustrated by typical numerical
results for semi-squeezed shapes are shown in Fig. 6 as a function of the small-scale mode.

The shape of the bispectrum and partial cancellation with the LSS signal can easily be understood in simple cases. A converg-
ing lens causes contraction of the ray bundle, so if there are two lens events the ray area is smaller at the second lensing event,
the difference in potential gradients across the beam is lower, and hence there is less effect from the second lens than if the first
lens had not been there: mathematically, (1 � )2 > 1 � 2, so combining two converging lenses has less effect than adding
the convergences linearly. An overdensity will have positive convergence, so consider combining a large lens and a small lens
both of positive convergence: since the combined effect is smaller than obtained by linearly adding the two convergences, there
is an anticorrelation between the large-scale lens convergence and the amplitude of the total small-scale convergence observed
(corresponding to a negative bispectrum). On the other hand density perturbations grow faster the more dense they are, so there is
a positive correlation between large overdensities and the magnitude of small scale perturbations on top of them (corresponding
to a positive bispectrum).

CMB lensing - weak lensing shear cross-correlation

12

FIG. 7. Scaling with redshift of the LSS (SC fit, dotted) and post-Born (solid, positive, and dashed, negative) contributions to the convergence
bispectrum for equilateral and folded shapes. At low redshifts the post-Born contributions are much smaller than LSS, but for CMB lensing
(z = z⇤) they are coincidentally of comparable order of magnitude on relevant scales. The bispectra here are plotted normalized by the
convergence power to remove the total growth in lensing signal with redshift, so the curves represent a measure of the amount of non-
Gaussianity.

where

F(L1, L2) ⌘ �
Z �s

0
d��2

[W (�,�s)�(z(�))]
3
P��(L1/�, z(�))P��(L2/�, z(�)). (4.12)

The squeezed structure of Eq. (4.10) is then inherited by the convergence bispectrum,
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where L1 ⌧ L, with the short mode L ⌘ (L2 �L3)/2. In the post-Born case we have analogously
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(4.14)
On the scales of interest the coefficients of the monopole and quadrupole part of the post-Born spectrum are both negative, but
in Eq. (4.13) they are both positive. We can therefore expect a partial cancellation between the contributions to the bispectrum.
Although the approximate results of Eqs. (4.10) and (4.13) are based on a series expansion, since the next term is O(L2

1/L
2
)

they provide quite a good qualitative fit to the full result for L & 2L1.
Whether there is total reduction depends on the particular triangle shape, since the relative size of the quadrupolar contribution

is much larger in the post-Born case. In the particular case where the long and short modes are orthogonal (cos 2' = �1)
we have the post-Born contribution b ⇡ 2Ms(L,L1) which is positive, and LSS contribution b ⇡ 13

7 F(L1, L), also
positive. However, when the modes are parallel (cos 2' = 1) they have opposite sign: b ⇡ �4Ms(L1, L)� 2Ms(L,L1) +

2

dMs(L,L1)
d lnL , b ⇡ (3 � d lnF(L,L1)

d lnL )F(L,L1). Contributions for cos 2' ⇠ 1 are larger than cos 2' ⇠ �1 because the
monopole and quadrupole parts contribute with the same sign, and hence the net effect is that the post-Born bispectrum reduces
the total signal compared to that from the tree-level large-scale structure bispectrum alone. This is illustrated by typical numerical
results for semi-squeezed shapes are shown in Fig. 6 as a function of the small-scale mode.

The shape of the bispectrum and partial cancellation with the LSS signal can easily be understood in simple cases. A converg-
ing lens causes contraction of the ray bundle, so if there are two lens events the ray area is smaller at the second lensing event,
the difference in potential gradients across the beam is lower, and hence there is less effect from the second lens than if the first
lens had not been there: mathematically, (1 � )2 > 1 � 2, so combining two converging lenses has less effect than adding
the convergences linearly. An overdensity will have positive convergence, so consider combining a large lens and a small lens
both of positive convergence: since the combined effect is smaller than obtained by linearly adding the two convergences, there
is an anticorrelation between the large-scale lens convergence and the amplitude of the total small-scale convergence observed
(corresponding to a negative bispectrum). On the other hand density perturbations grow faster the more dense they are, so there is
a positive correlation between large overdensities and the magnitude of small scale perturbations on top of them (corresponding
to a positive bispectrum).

Preliminary

Fabbian et al. (2018, in prep.)

Pratten & Lewis 
(2016)
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Results from Flagship

• Noise but no news from SWG leader despite multiple request

• Need to pursue an internal simulation strategy for “quicker" studies

 11

From Pablo 
Fosalba
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Lightcone comparison in a nutshell

• Two set of IC, Euclid cosmology, 512 Mpc/h, 1024 particles

• Compare convergence 2-point correlation, power spectrum, PDF, …
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Convergence 1-point PDF

 13Oct 24, 2017 Baryons, IA, Simulations 40

Lensing Convergence PDF

• Few issues related to smoothing and different maps resolution solved

• Overall accuracy ~ 5%, some residual discrepancies on the tails,

• FOM yet to be defined

Lightcone 
comparison 

project (in prep)

PDF - with smoothing
PDF of kappa PDF of kappa minus mean in FOV

Subtracting the mean value in the FOV and smoothing makes all codes agree .
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Lensing peak counts
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Lightcone comparison project (in prep)

Lensing peak counts - 1 arcmin smoothing

With shape noiseWithout shape noise


