
DEMNUni-Covariances project

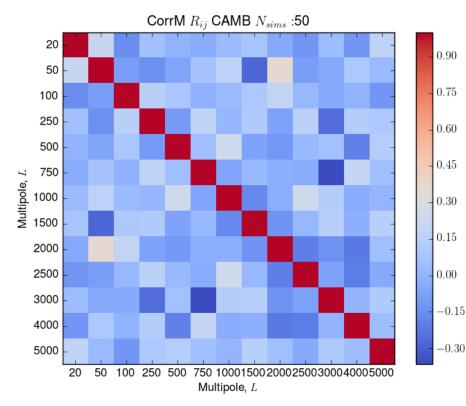
	Number of sims	Cosmology (background)	BoxSize / NumPart	Number of snapshot (+FoF, SubGroups, M200,)
LCDM (Euclid official)	50 sims + 50 in early 2019	OmeBr = 0.05 OmNeu = 0.0 OmCDM = 0.27 OmLam = 0.6800	Box Size = 1 Gpc/h Num Part = 1024^3	63 z in [0,99]
LCDM + Mnu= 0.16	50 sims + 50 in early 2019	OmeBr = 0.05 OmNeu = 0.0 OmCDM = 0.27 OmLam = 0.6800	Box Size = 1 Gpc/h Num Part = 1024^3	63 z in [0,99]

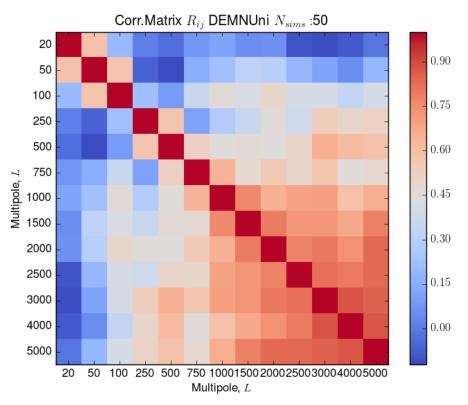
Available (Healpix) Maps:

Particle Maps	 50 x 63 Surface Mass Density Maps (for each snapshot/redshift, for each nbody simulation) 50 x 63 CMB-Convergence Maps (for each snapshot/redshift, for each nbody simulation) → 50 <u>CMB-Convergence Integrated Map</u> (in Born approx. for each nbody simulation)
Grid maps	 50 CMB-lensing potential & ISW/RS 50 WL maps with sources placed at z=8,5,2,1

DEMNUni-Covariances project: CMB-Convergence

 C_L CMB-Convergence DEMNUni \rightarrow Covariance Matrix


13 Bins in multipole, L = {20,50,100,250,500,750,1000,1500,2000, 2500,3000,4000,5000}


Nside Convergence maps = 4096 Number of Simulations = 50

LCDM only (LCDM+Mnu=0.16 *in production*)

<u>Figures are Correlation Matrix</u> (Covariances normalized to diagonal variances)

DEMNUni-Covariances project: CMB-Convergence

 C_1 DEMNUni \rightarrow Covariance Matrix

 $C_LCAMB \rightarrow Covariance Matrix$

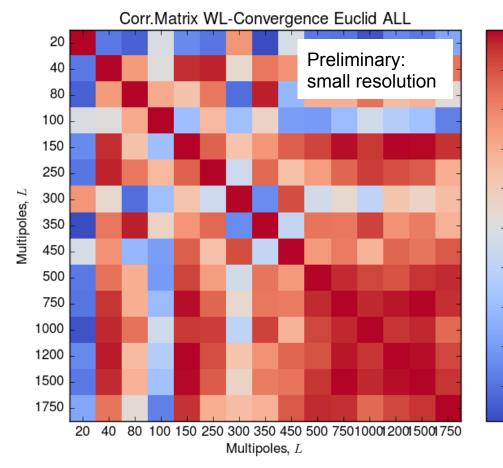
DEMNUni-Covariances project: WL-Convergence

1.0

0.8

0.6

0.4


0.2

0.0

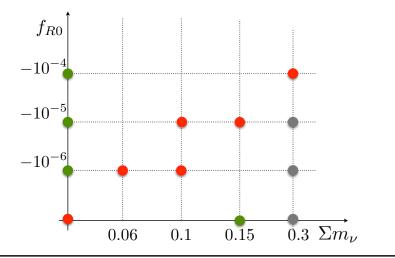
-0.2

-0.4

-0.8

- C_L WL-Convergence DEMNUni \rightarrow Covariance Matrix
- 16 Bins in multipole, L = {20,40,80,100,150,250,300,350,450,500,750,1 000,1200,1500,1750,2000}
 - Nside Convergence maps = 1024 elle-max = 2048 (Preliminary, small resolution)

LCDM only (LCDM+Mnu=0.16 *in production*)

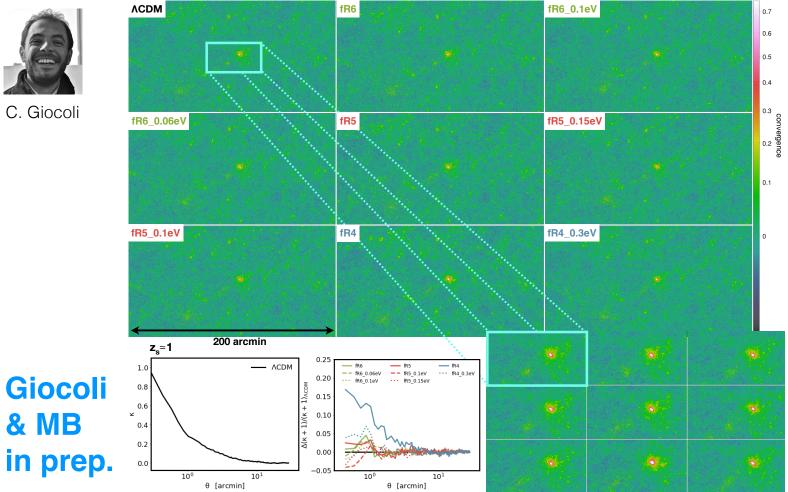

- -0.6 n(z) is Euclid red book
 - Figures are Correlation Matrix (Covariances normalized to diagonal variances)

D U S T G R A I N

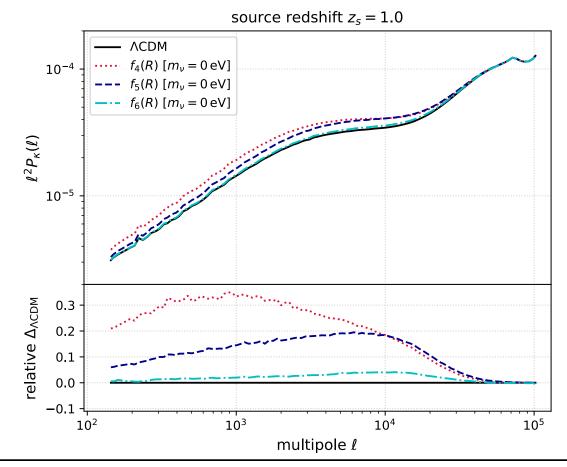
Dark Universe Simulations to Test GRAvity In the presence of Neutrinos

Combining a full solver for f(R) gravity (MG-GADGET, Puchwein, MB & Springel 2013) with the particle-based implementation of massive neutrinos (NU-GADGET, Viel, Haehnelt & Springel 2010)

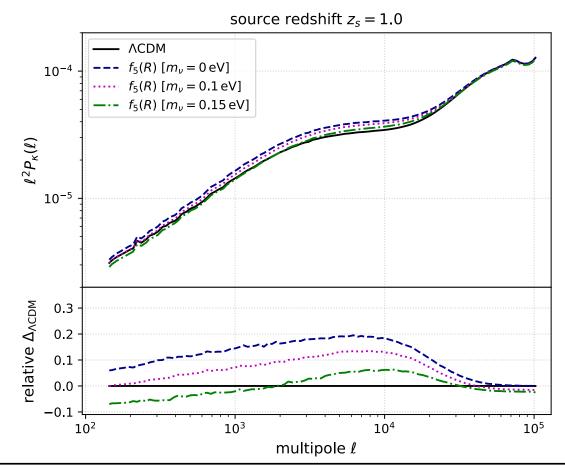
Full simulations (2 Gpc, 2x2048³ particles) **currently running...** Calibration sample (DUSTGRAIN-pathfinder) **available!**



MARCO BALDI - EUCLID CMBX MEETING - FERRARA 4-5 X 2018


C. Giocoli

& MB


MARCO BALDI - EUCLID CMBX MEETING - FERRARA 4-5 X 2018

Peel, MB et al. arXiv:1805:05146

MARCO BALDI - EUCLID CMBX MEETING - FERRARA 4-5 X 2018

Peel, MB et al. arXiv:1805:05146

MARCO BALDI - EUCLID CMBX MEETING - FERRARA 4-5 X 2018

Status and plan

Done	 Galaxy weak-lensing capabilities tested with code comparison project Estimation of CMB lensing potential with 2nd-order effects
Doable	 Improve ISW-galaxy cross-correlation simulations Start investigating covariance of estimators with (some) non-linear effects
Todo	 Raytracing to have post-Born effects / observables Interface with SZ cluster simulations @ IAS
Problems	 HOD and SHAM galaxy mocks for cross-correlation Expertise lost, considering publicly available tool Need Manpower