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In most realistic applications, it is convenient to think of
probabilities as functions of the outcomes. To every possible
outcome x , a probability is assigned via an unambiguous rule.

1. Probability Function

Any function f (x) that assigns a probability P(x) to outcome x is
called a probability function. In the previous lecture, we considered
outcomes that can be modeled as n-tuples, (z1, · · · , zn), with
elements drawn from the set of natural numbers
N = {0, 1, · · · ,ℵ0}. But, we can also model outcomes using
n-tuples with elements drawn from the set of real numbers
R = (−c , c)a.

aGeorg Cantor (1845 - 1918), inventor of set theory, proved the astonishing
theorem c = 2ℵ0 , that the cardinalities c and ℵ0 of sets R and N, respectively,
are related in this amazing way. We typically use the symbol ∞ instead of c.
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2. Probability Mass Function

If x is from N, then the probability function f (x) is called a
probability mass function (pmf).

3. Probability Density Function

If x is from R, a continuous set, then the probability function f (x)
is called a probability density function (pdf) and is often written
with a lower case letter, e.g., p. For continuous sets f (x) does not
directly assign a probability.

To do so, we integrate the pdf f (x) over an interval that is at least
as large as an infinitesimal dxa. In practice, we compute

P(x) =

∫ x2

x1

f (X ) dX .

aAn infinitely small non-zero number!
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Random Variables

Formal books on statistics often distinguish between a random
variable X , denoted with an upper case letter, and its outcomes x ,
denoted by lower case letters. However, I shall not make that
distinction unless it makes things clearer.

Randomness
What do we mean when we say that an outcome is random?

Consider the time of decay of an excited atom. According to
quantum mechanics, no rule exists that determines when such a
thing happens. The time of decay is an example of a “causeless”
effect!

On the other hand, we couldn’t do our work without the use of
strictly deterministic rules that simulate random outcomes! (Think
TRandom3.)
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Randomness...
Suppose there are 10100 particles in the known universe undergoing
random changes of state on the average 1030 times per second.
That amounts to 10130 random changes of microstates per second.
Now, suppose that the universe, as we know it, will last 1020

seconds.

During this immense span of time, the universe will have
undergone 10150 random changes of microstates.

Question: If the universe is a giant simulation governed by a
universal random number generator with a Poincaré cycle1 that is
> 10150, how could we distinguish that universe from one with
causeless effects? Discuss, but, not now!

1A sequence of states that returns to the initial state after, typically, passing
through an immense number of states.
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More Definitions
There are several numbers that can be used to characterize a
probability function. Here are a few.

4. Moments

The r th moment µr (a) about a of f (x) is defined bya

µr (a) =

∫
Sx

(x − a)r f (x) dx ,

where Sx is the domainb of f (x).

µ = µ1(0) is called the mean and is one measure of where the
function lies; Varx = µ2(µ) is called the variance; σ =

√
Varx , the

standard deviation, is one measure of the width of f (x).

aFor discrete distributions, we replace the integral by a sum.
bThe domain of a function is the set of its “input” values. The range is the

set of its “outputs”.
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Yet More Definitions

5. Quantile Function

The function

D(x) =

∫
X≤x

f (X ) dX

is called the cumulative distribution function (cdf) of f (x), or
sometimes simply the distribution function. (Here is an example
where distinguishing between X and x is helpful.) The function
x = Q(P) which returns x , given D(x) = P, is called the quantile
function and x is called the P-quantile of f (x).

Sometimes it is convenient to distinguish between the left cdf
DL(x) ≡ D(x) and the right cdf defined by

DR(x) =

∫
X≥x

f (X ) dX .
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And Yet More Definitions...!

6. Covariance, Correlation, Independence

The covariance of random variables x and y with probability
function f (x , y) is defined by

Covxy =

∫
Sx

∫
Sy

(x − µx) (y − µy ) f (x , y) dx dy .

Covxy is a measure of the correlation between the variables x and
y .

If the probability function f (x , y) can be written as
f (x , y) = f (x) f (y) then the variables x and y are said to be
independent in which case Covxy = 0.

However, in general, Covxy = 0 does not imply independence.
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Example (2.1 The Binomial Distribution)

Consider m proton-proton collisions at the LHC of which r are
successes. A success might be the creation of a Higgs boson that
decays to four leptons. Suppose, we are able to record n ≤ m
collision events of which k ≤ n are successes.

What is the probability P(k , n|r ,m) of recording exactly k
successes and exactly n − k failures in n trials, that is, collisions,
given r successes and m − r failures?

There is no solution unless we are prepared to make some
assumptions, for example:

1 The problem is the same as drawing k blue balls and n− k red
balls from a box containing r blue balls and m − r red balls.

2 Each draw of n objects of which k are successes is a single
outcome.

3 Each outcome is equally probable. 12 / 39
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Example (2.1 The Binomial Distribution)

Let’s follow a counting strategy, like the one we used in the
previous lecture.

1 Count the number of ways T to draw samples of size n from
m collisions.

2 Count the number of ways S to draw exactly k successful
collisions from r successes and exactly n − k failed collisions
from m − r failures.

3 By assumption, outcomes are equally probable; therefore, the
probability of the specific outcome (k , n) given (r ,m) equals
S/T .
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Solution

1 How many samples of size n can be drawn from a sample of
size m? (

m

n

)
2 How many samples of size k can be drawn from r successes?(

r

k

)

3 How many samples of size n − k can be drawn from m − r
failures? (

m − r

n − k

)
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Solution contd.

P(k , n|r ,m) = number of favorable outcomes

/ number of possible outcomes

=

(
r

k

)(
m − r

n − k

)
/

(
m

n

)
=

(
n

k

)
f (k , n, r ,m),

where f (k , n, r ,m) =
r !

(r − k)!

(m − r)!

(m − r − n + k)!
/

m!

(m − n)!
.

But, what we really want to know is the probability P(k , n) of k
successes given n trials regardless of the values of r and m, which
is just as well because we don’t know r and we know m only
approximately.
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In order to compute P(k, n), the probability rules require that we
calculate the sum

P(k , n) =
∑
r ,m

P(k , n|r ,m)P(r ,m).

What is P(r ,m)? It is the probability of the sequence of r
successes in m collisions at the LHC.

Unfortunately, it is far from clear how to arrive at sensible values
for P(r ,m)! Since we don’t know what to do with P(r ,m), we’ll
leave it unspecified.

But, note the consequence. Different choices for P(r ,m) will imply
different values for the probability of k successes in n trials for the
same data (k, n)! This seems unavoidable.

Let’s press on regardless!
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At the LHC, m is huge and generally r << m. For the Higgs
boson at 13 TeV, theory predicts and experiment confirms that
z = r/m ≈ 10−10. It therefore makes sense to consider the
idealization m→∞ in the expression

P(k , n) =
∑
r ,m

P(k , n|r ,m)P(r ,m).

To that end, let’s write the above in terms of the unknown relative
frequency of success z = r/m:

P(k, n|z ,m) =

(
n

k

)
f (k, n, z ,m),

where f (k, n, z ,m) =
(zm)!

(zm − k)!

(m − zm)!

(m − zm − n + k)!
/

m!

(m − n)!
,

and let m→∞ while keeping k and n fixed.
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We can rewrite f (k, n, z ,m) as

f (k , n, z ,m) =
(zm)!

(zm − k)!

(m − zm)!

(m − zm − n + k)!
/

m!

(m − n)!
,

= zk(1− z)n−k

×

[∏k−1
i=0 (1− i/(zm))

] [∏n−k−1
i=0 (1− i/(m(1− z)))

]
∏n−1

i=0 (1− i/m)
,

→ zk(1− z)n−k as m→∞.
What happens to the probabilities P(r ,m)? To see what happens,
write P(k , n) as a double sum over the rational numbers z and the
integers m

P(k , n) =
∑
r ,m

P(k, n|r ,m)P(r ,m),

=
∑
z

∑
m

P(k , n|zm,m)P(zm,m) with z = r/m.
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P(k , n) =
∑
z

∑
m

P(k , n|zm,m)P(zm,m) with z = r/m,

=
∑
z

(
n

k

)
zk(1− z)n−k π(z),

where π(z) ≡
∑

m P(zm,m) is called a prior density. As m→∞,
the sum over the relative frequencies z converges to an integral
and we obtain:

Bruno de Finetti’s Representation Theorem

P(k, n) =

∫ 1

0
binomial(k , n, z)π(z) dz ,

where binomial(k , n, z) =

(
n

k

)
zk(1− z)n−k .
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The Binomial Distribution

What are we to make of the prior
density π(z)? Well, we could ask
our friendly theorist for a
prediction of the relative
frequency z of Higgs boson
production at the LHC at
13 TeV. Suppose she accurately
predicts that z = p.

We might consider modeling this
information by setting
π(z) = δ(z − p) in de Finetti’s
theorem. If we do so, we obtain
the binomial distribution

P(k, n) = binomial(k, n, p)
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Example (2.2 Poisson Distribution)

The Poisson distribution is arguably the most important
distribution in particle physics and astronomy. As you will see in
subsequent lectures, the distribution features prominently in the
counting of rare events.

The Poisson distribution can be derived from a stochastic model.
It can also be derived from the binomial distribution.

Exercise 3

Derive the Poisson distribution from the binomial distribution
assuming that p → 0, while n→∞ such that a = np is constant.
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Historical Aside

In 1898, the Russian
economist von Bortkiewicz
published a book in which he
presented data on the number
of deaths per annum in the
Prussian Army from horse
kicks.

von Bortkiewicz noted that
the distribution of observed
counts could be modeled by
the distribution first described
(in 1837) by Siméon Poisson
(1781 - 1840).

2
2https://mindyourdecisions.com/blog/2013/06/21/what-do-deaths-from-

horse-kicks-have-to-do-with-statistics/ 22 / 39
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The Poisson Distribution as a Stochastic Process
Suppose that at time t + dt we have recorded n counts and that in
the time interval (t, t + dt) only two things can happen:

1. we had n counts at time t and recorded none during
(t, t + dt), or

2. we had n − 1 counts at time t and recorded one count during
(t, t + dt).

Being kicked to death by a horse is rare as are Higgs bosons, so
the chance of having more than one occur during a short time
interval is assumed to be negligibly small.

Let’s further suppose that the probability to get an event during
the specified time interval of size dt is proportional to its size.

We can now assign probabilities.
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The Poisson Distribution as a Stochastic Process
Here are the transition probabilities that define the Poisson process:

Pn(t + dt) = probability that the count is n at time t + dt

Pn(t) = probability that the count is n at time t

Pn−1(t) = probability that the count is n − 1 at time t

qdt = probability to record 1 event during (t, t + dt)

1− qdt = probability to record 0 events during (t, t + dt)

In principle, q could depend on time, but we shall assume it does
not. Using the probability rules, we can write

Pn(t + dt) = (1− qdt)Pn(t) + qdt Pn−1(t),

or noting that dPn(t)/dt = [Pn(t + dt)− Pn(t)]/dt 3

dPn

dt
= −q Pn + q Pn−1.

3Apparently, manipulating infinitesimals like this is legitimate mathematics!
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The Poisson Distribution as a Stochastic Process
Equations such as

dPn

dt
= −q Pn + q Pn−1,

can be solved recursively, noting that P−1 = 0.

Exercise 4

Show that

Pn(t) = Poisson(n, a) =
e−aan

n!
,

where the mean count is a = qt. Also, show that Varn = a, an
important fact about the Poisson distribution.
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Gaussian Distribution
The probability density function of the Gaussian distribution, also
known as the normal distribution, is

N(µ, σ) ≡ Gaussian(x , µ, σ) =
e−

1
2

(x−µ)2/σ2

σ
√

2π

with mean µ and variance σ2. Also note, where z = (x − µ)/σ,

P(z ∈ [−1.00, 1.00]) = 0.683

P(z ∈ [−1.64, 1.64]) = 0.900

P(z ∈ [−1.96, 1.96]) = 0.950

P(z ∈ [−2.58, 2.58]) = 0.990

P(z ∈ [−3.29, 3.29]) = 0.999

P(z ∈ [5.00,∞)) = 2.7× 10−7

The Gaussian is the most important distribution in statistics...
27 / 39
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Gaussian Distribution
...because all sensible probability distributions approach a Gaussian
in some limit. The precise statement is the central limit theorem.

Example (2.3 The Central Limit Theorem)

Consider the average t = 1
n

∑n
i=1 xi , where xi ∼ p(µ, σ) and

p(µ, σ) is any probability density with finite mean µ and standard
deviation σ.

Define the variable z = (t − µ)/(σ/
√
n). The mean of its

probability density, f (z), is 0 and its standard deviation is 1. The
central limit theorem states that

lim
n→∞

P(z < x) =

∫ x

−∞
Gaussian(X , 0, 1) dX .
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χ2 Distribution Write z = (x − µ)/σ, where x ∼ N(µ, σ) and
consider the sum

t =
n∑

i=1

z2
i .

What is the probability density function of t? For any well-behaved
probability density function, p(z1, · · · , zn), the pdf of t, p(t), is
given by the random variable theorem4

p(t) =

∫
dz1 · · ·

∫
dzn δ (t − g(z1, · · · , zn)) p(z1, · · · , zn) ,

where g(z1, · · · , zn) is the function, such as the sum above, that
maps z1 to zn to t. Here’s a brief proof of the theorem...

4A theorem for physicists in the theory of random variables, D. Gillespie,
Am. J. of Phys. 51, 520 (1983).
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Theorem

p(t) =
∫
dz1 · · ·

∫
dzn δ (t − g(z1, · · · , zn)) p(z1, · · · , zn).

Proof.

Step 1. Stare at the above for about a minute ...
Step 2. ... and conclude it is intuitively obvious and therefore true!

Having “proved” the theorem, let’s apply it to our problem!

On the next slide, we shall use the amazingly useful formula

δ(x) =
1

2π

∫ ∞
−∞

e iωx dω ,

which every one of you should memorize!
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The zj are independent random variables. Therefore, using the
representation of the δ-function on the previous slide, we can write

p(t) =

∫
dz1 · · ·

∫
dzn δ (t − g(z1, · · · , zn)) p(z1, · · · , zn)

=
1

2π

∫ ∞
−∞

dω e iωt
n∏

j=1

∫ ∞
−∞

e−iωz
2
j p(zj) dzj ,

=
1

2π

∫ ∞
−∞

dω e iωt

(∫ ∞
−∞

e−iωz
2 e−z

2/2

√
2π

dz

)n

,

=
1

2π

∫ ∞
−∞

dω e iωt

(
1√

2iω + 1

∫ ∞
−∞

e−(2iω+1)z2/2

√
2π

d
√

2iω + 1z

)n

,

=
1

2π

∫ ∞
−∞

dω
e iωt

(2i)n/2

1

(ω − i/2)n/2
.
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χ2 Distribution
The integrand has a singularity in the complex plane at ω = i/2

p(t) =
1

2πi

∫ ∞
−∞

dω
ie iωt

(2i)n/2

1

(ω − i/2)n/2
.

Simple poles of order n that lie away from the real line can be
handled using the following magical result,

1

2πi

∫ ∞
−∞

dω F (ω)
1

(ω − ω0)n
= lim

ω→ω0

1

(n − 1)!

dn−1

dωn−1
F (ω).

Alas, for odd n our singularity involves an annoying square-root.

No worries! We merely follow the time-honored strategy of
physicists: solve a simpler problem then generalize its solution by
inspection!

32 / 39



Basic Definitions
Discrete Distributions

Continuous Distributions
Summary

Gaussian
χ2

Cauchy

χ2 Distribution Let’s compute

p(t) =
1

2πi

∫ ∞
−∞

dω
ie iωt

(2i)m
1

(ω − i/2)m
,

for integer m. We have a pole singularity of order m and, therefore,

1

2πi

∫ ∞
−∞

dω
ie iωt

(2i)m
1

(ω − i/2)m
=

1

(m − 1)!

i

(2i)m
(it)m−1 e−t/2,

=
1

Γ(m)

tm−1 e−t/2

2m
.

The result is valid for non-integer values of m; it is therefore the
solution for m = n/2. We conclude that the pdf of the sum of
squares of n standardized Gaussian random variables is the χ2

density (t = χ2) of n degrees of freedom,

p(t) =
1

Γ(n/2)

tn/2−1 e−t/2

2n/2
, mean n, variance 2n

.
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Cauchy Distribution
Let x , y ∼ N(0, 1) ≡ g(x) = exp(−x2/2)/

√
2π. The pdf of

t = y/x is given by

p(t) =

∫ ∞
−∞

dx

∫ ∞
−∞

dy δ(t − y/x) g(x) g(y),

=
1

2π

∫ ∞
−∞

dx e−
1
2
x2

[∫ ∞
−∞

dy δ(t − y/x) e−
1
2
y2

]
.

The integral in the brackets is of the form∫
δ(h) f (y) dy ,

where the δ-function argument h is a function of y . A more
tractable form of the δ-function can be obtained from the identity∫

δ(h) dh =

∫
δ(h)

∣∣∣∣dhdy
∣∣∣∣ dy .
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∫
δ(h) dh =

∫
δ(h)

∣∣∣∣dhdy
∣∣∣∣ dy .

The function δ(h)|dh/dy | is zero everywhere except at y = y0,
where y0 is the solution of h(y) = 0. By definition, this function is
δ(y − y0).

Therefore, δ(h) = δ(y − y0)/|dh/dy | and the integral becomes∫
δ(h) f (y) dy →

∫
δ(y − y0)/|dh/dy | f (y) dy .

For our problem, h(y) = t − y/x , |dh/dy |−1 = x ,
f (y) = exp(−1

2y
2), and the solution of h(y) = 0 is y0 = xt.
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Therefore,

p(t) =
1

2π

∫ ∞
−∞

dx e−
1
2
x2

[∫ ∞
−∞

dy δ(t − y/x) e−
1
2
y2

]
,

=
1

2π

∫ ∞
−∞

dx e−
1
2
x2

[∫ ∞
−∞

dy δ(y − y0) x e−
1
2
y2

]
,

=
1

2π

∫ ∞
−∞

dx e−
1
2
x2
xe−

1
2

(xt)2
,

=
1

π(1 + t2)

∫ ∞
0

e−x
2(1+t2)/2 d(x2(1 + t2)/2),

from which we conclude that the pdf of the ratio of two
standardized Gaussian random variables is the rather pathological
Cauchy density,

p(t) =
1

π(1 + t2)
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Exercise 5 – Example of the Central Limit Theorem

Consider the sum t =
∑n

j=1 xj , where the xj are independent and
identically distributed (iid) random variables from the uniform
distribution with density U(µ, σ) = 1/2 defined on the domain
x ∈ (−1, 1). We want the pdf of t, p(t), to have unit variance.

1 What is σ2 for U?

2 Show that a = 3/n if the variance of p(t) has unit variance.

3 Show that p(t) can be written as

p(t) =
1

2π

∫ ∞
−∞

e iωtsincn(aω) dω, sinc(x) ≡ sin x/x .

4 Then show that

lim
n→∞

p(t) = e−t
2/2 /
√

2π.
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Summary

According to Kolmogorov, probabilities are functions whose
domain are suitable collections of sets and whose range is the
unit interval.

To be useful, however, probabilities must be interpreted. The
most common interpretations are: relative frequency and
degree of belief.

If it is possible to decompose experimental outcomes
(basically, a set of n-tuples) into outcomes that are considered
equally probable, then the probability of an outcome may be
taken to be the ratio of the number of outcomes with the
desired characteristics to that of all possible outcomes.

More generally, we use probability functions; probability mass
functions for discrete distributions and probability density
functions for continuous ones.
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