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Today’s Outline 
Machine Learning 
•  in Theory 
•  in Practice  
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Machine Learning 
 Basics 
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Machine Learning 
What is Machine Learning? 
•  Study of algorithms that  

 improve their performance P 
 for a given task T  
 with more experience E 

 
Sample tasks: identifying cats, particles 
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Approach:	

Machine Learning 

   Training data TD = {y, x} = (y,x)1…(y,x)N,  
 
   Function space {f} and a  constraint on 

these functions 
 
   Learn the mapping y = f(x) 
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Examples 
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•  Algorithms capable of 
recognizing us from the digital 
“traces” we leave behind 
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Choose 
 Function space  F = { f (x, w) } 
 Constraint   C 
 Loss function*  L 

Method 
 Find f (x) by minimizing the empirical risk R(w) 
      subject to the constraint 

     C(w) 

   

F 

f (x, w*) 
C(w) 

  
R[ fw] = 1

N
L( yi , f (xi , w))

i=1

N

∑

*The loss function measures the cost of choosing badly 

Machine Learning 
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Machine Learning 
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Many methods (e.g., neural networks, boosted decision trees, 
rule-based systems, random forests,…) use the  

 quadratic loss 

and choose f (x, w*) by minimizing the  
 constrained mean square empirical risk 

  L( y, f (x, w)) = [y − f (x, w)]2

  
R[ fw] = 1

N
[yi − f (xi ,w)]2

i=1

N

∑ + C(w)



History 
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World Wide Web is 30! Machine Learning  in HEP is at least 30 



Long history 
•  First methods used in late 80s  
•  Tevatron: pioneering ML efforts in the 90s 
•  LHC Run 1: wide use shallow machine 

learning (2009-2013) 
•  Explosion of applications in all frontiers - 

energy, intensity, cosmic, achieving state 
of the art performance in various tasks 
(2014 – present) 
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Optimality criterion: minimize the error rate, α + β!

Background density 
p(x, b) = p(x | b) p(b) 

Signal density 
p(x, s) = p(x | s) p(s) 

x 

de
ns

ity
 

   
p 

(x
) 

x0 

β#
α#

Classification Theory 
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Classification in Practice 
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In Particle Physics 
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Higgs Boson 
Discovery  

15	

July 4, 2012  
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•  Particle Identification 
•  Identification of interactions 
•  Energy regression 
•  Event selection 

Improvement from all areas 
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in Higgs Discovery 



Identifying boosted objects 

15'

vs'

Identifying boosted objects 

15'

vs'

HEP Applications 
Primarily Classification 

– Particle Level: 
•  Particle identification 

   Photon or a jet?  
•  Pattern recognition  

     Tracks, vertices 

– Event Level: 
•  New Physics searches 

   New Physics event or background? 
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 Imaging Techniques 

Fast 
Simulation 

Relevant areas 
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Tracking Object Identification 

Trigger 

⌘ �

b
ea
m

pre-process

convolutional layer

max-pooling

dense layer

quark jet

gluon jet

| {z }
⇥3

Figure 2: An illustration of the deep convolutional neural network architecture. The first

layer is the input jet image, followed by three convolutional layers, a dense layer and an

output layer.

The maxpooling layers performed a 2⇥2 down-sampling with a stride length of 2. The dense

layer consisted of 128 units.

All neural network architecture training was performed with the Python deep learning

libraries Keras [47] and Theano [48] on NVidia Tesla K40 and K80 GPUs using the NVidia

CUDA platform. The data consisted of the 100k jet images per pT -bin, partitioned into 90k

training images and 10k test images. An additional 10% of the training images are randomly

withheld as validation data during training of the model for the purposes of hyperparameter

optimization. He-uniform initialization [49] was used to initialize the model weights. The

network was trained using the Adam algorithm [50] using categorical cross-entropy as a loss

– 8 –

Event Level ID 06/06/2019	



ML Algorithms 
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•  Fisher, Quadratic 
•  Naïve Bayes (Likelihood) 
•  Kernel Density Estimation 
•  Random Grid Search 
•  Rule ensembles 
•  Boosted decision trees 
•  Random forests 
•  Support vector machines 
•  Genetic algorithms 
•  Deep learning neural networks 



If we use different covariance matrices for the signal and the 
background densities, we obtain the quadratic discriminant: 

    

    a fixed value of  which defines a curved 
   surface that partitions the space {x}  
   into signal-rich and background-rich  
   regions 

30 

  

λ(x) = (x − µb )T Σb
−1(x − µb )

− (x − µs )
T Σs

−1(x − µs )

decision 
boundary 

Linear and Quadratic 
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λ(x) = ln

G x | µs ,Σ( )
G x | µb ,Σ( ) → w ⋅ x + c

Take p(x | s) and p(x | b) to be  
Gaussian (and dropping the  
constant term) yields 

w ⋅ x + c > 0

w ⋅ x + c < 0

  
B(x) = p(x | s) p(s)

p(x | b) p(b)

w ∝ Σ−1(µs − µb )

decision boundary 

Linear (Fisher) Quadratic 

Decision 
Boundaries 
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Function approximation 

Problem Setting: 
•  Set of possible instances X

•  Unknown target function f : XY

•  Set of function hypotheses H={ h | h : XY }

Input: 

•  Training examples {<x(i),y(i)>} of unknown target function f 

Output: 
•  Hypothesis h ∈ H that best approximates target function f

superscript: ith training example

Each internal node: test one attribute Xi 

Each branch from a node: selects one value for Xi 

Each leaf node: predict Y  (or P(Y|X ∈ leaf)) 

A Decision tree for 

 F: <Outlook, Humidity, Wind, Temp>  PlayTennis? 

•  Decision trees are recursively constructed 
multidimensional histograms 
– Each leaf associated to the value (class)  

of f(x) to be approximated 
 
	

	

	

Decision Trees 

06/06/2019	 Sergei V. Gleyzer                                                  INFN Paestum Lectures	 21	



Doctors: Decision Trees 
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Ensemble Methods 
Suppose you have a collection of discriminants  

f (x, wk), which, individually, perform only 
marginally better than random guessing. 

 
 
 
From such discriminants, weak learners, it is 

possible to build highly effective ones by 
averaging over them:  

0
1

( ) ( , )
K

k k
k

f x a a f x w
=

= +∑

Jerome Friedman & Bogdan Popescu (2008) 
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Adaptive Boosting 
AdaBoost (Freund & Shapire 1997) 
•  Train in stages: adaptive weights 
•  Misclassified events get a larger weight 

going into the next training stage 
–  Classify with a majority vote from all trees 

 
•  Works very well to improve classification 

power of “greedy” decision trees  
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Repeat K times: 
1.  Create a decision tree f (x, w) 
2.  Compute its error rate ε on the weighted 

training set 
3.  Compute α = ln (1– ε) / ε 
4.  Modify training set: increase weight of 

incorrectly classified examples relative to the 
weights of those that are correctly classified 

Then compute weighted average f (x) = ∑ αk  f (x, wk) 

Y. Freund and R.E. Schapire (1997) 

Adaptive Boosting 
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Illustrative Example 
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H à ZZ* à 4 leptons 

 pp→ H → ZZ→ ℓ+ℓ− #ℓ + #ℓ −

Signal 

 pp→ ZZ→ ℓ+ℓ− #ℓ + #ℓ −

Background mZ1

mZ2
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x = (mZ1, mZ2) 
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First 6 Decision Trees 
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First 100 Decision Trees 
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Averaging over a Forest 
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H to ZZ to 4Leptons 
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HiggsML Challenge 
First HEP-ML Challenge 
 
Kaggle platform 
 
Classification 
 
1785 teams 
 
35772 solutions 
 
Tons of excitement 
 
Winners: non-HEP! 
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Diving Deeper 
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First DNN paper in HEP 

HEP.TrkX 2019 

Baldi, Sadowski, & Whiteson, 2014 
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Artificial Neural Networks 

x1	
x2	
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	A Real Neuron 



	Graphical Representation 

f (x,w) = a + bj tanh cj + djixi
i=1

I

∑"

#
$

%

&
'

j=1

H

∑

n(x,	w)	

x1	

x2	

cj	

a	 )],(exp[1
1),(

wxf
wxn

−+
=

f  is used for regression 
n is used for classification 
w = a, b, c, d 

bj	
dji	

Hidden	Layer	

Output	Layer	

Input Layer 

06/06/2019	 Sergei V. Gleyzer                                                  INFN Paestum Lectures	 37	

sigmoid 
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	Artificial Neuron 

Identity: σ(X) = X 
  
ReLU: σ(X) = max (0, x) 
 
Sigmoidal: σ(X) = [1+exp(-x)]-1, σ(X) = tanhx 



Adjustable Weights 
Compute network weights with  
•  Error gradients 
 
 
 
 
Inputs forward 
Errors go backward!  
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Deep Learning 
•  Training more complex models 

–  Increased Depth 
– Novel activation functions: ReLU 
– Specialized Architectures: Convolutional, 

Recurrent, Graphs 
•  Effective strategies to avoid over-

fitting (regularization) 
– Data Augmentation, DropOut 
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Feedforward NNs, cont’d
• Vanishing gradient! 

• How do we fix that? ReLU! 

• Local minima… 

• Fix with Stochastic Optimization! 

• Adam, RMSProp, Adagrad, etc 

• Overtraining 

• Dropout!

ReLU 
Rectified Linear Unit (ReLU) 
•  Rectified neuron 
•  Faster training convergence 

– Better solutions than sigmoids 
•  Vanishing gradients 

 
– Trained by 

back-propagation  
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f (y) = y

y

f (y)

f (y) = y

f (y) = ay

y

f (y)

f (y) = 0

Figure 1. ReLU vs. PReLU. For PReLU, the coefficient of the
negative part is not constant and is adaptively learned.

2. Approach
In this section, we first present the PReLU activation

function (Sec. 2.1). Then we derive our initialization
method for deep rectifier networks (Sec. 2.2). Lastly we
discuss our architecture designs (Sec. 2.3).

2.1. Parametric Rectifiers
We show that replacing the parameter-free ReLU activa-

tion by a learned parametric activation unit improves clas-
sification accuracy1.

Definition

Formally, we consider an activation function defined as:

f(yi) =

(
yi, if yi > 0

aiyi, if yi  0
. (1)

Here yi is the input of the nonlinear activation f on the ith
channel, and ai is a coefficient controlling the slope of the
negative part. The subscript i in ai indicates that we allow
the nonlinear activation to vary on different channels. When
ai = 0, it becomes ReLU; when ai is a learnable parameter,
we refer to Eqn.(1) as Parametric ReLU (PReLU). Figure 1
shows the shapes of ReLU and PReLU. Eqn.(1) is equiva-
lent to f(yi) = max(0, yi) + ai min(0, yi).

If ai is a small and fixed value, PReLU becomes the
Leaky ReLU (LReLU) in [20] (ai = 0.01). The motiva-
tion of LReLU is to avoid zero gradients. Experiments in
[20] show that LReLU has negligible impact on accuracy
compared with ReLU. On the contrary, our method adap-
tively learns the PReLU parameters jointly with the whole
model. We hope for end-to-end training that will lead to
more specialized activations.

PReLU introduces a very small number of extra param-
eters. The number of extra parameters is equal to the total
number of channels, which is negligible when considering
the total number of weights. So we expect no extra risk
of overfitting. We also consider a channel-shared variant:

1Concurrent with our work, Agostinelli et al. [1] also investigated
learning activation functions and showed improvement on other tasks.

f(yi) = max(0, yi) + amin(0, yi) where the coefficient is
shared by all channels of one layer. This variant only intro-
duces a single extra parameter into each layer.

Optimization

PReLU can be trained using backpropagation [17] and opti-
mized simultaneously with other layers. The update formu-
lations of {ai} are simply derived from the chain rule. The
gradient of ai for one layer is:

@E
@ai

=
X

yi

@E
@f(yi)

@f(yi)

@ai
, (2)

where E represents the objective function. The term @E
@f(yi)

is the gradient propagated from the deeper layer. The gradi-
ent of the activation is given by:

@f(yi)

@ai
=

(
0, if yi > 0

yi, if yi  0
. (3)

The summation
P

yi
runs over all positions of the feature

map. For the channel-shared variant, the gradient of a is
@E
@a =

P
i

P
yi

@E
@f(yi)

@f(yi)
@a , where

P
i sums over all chan-

nels of the layer. The time complexity due to PReLU is
negligible for both forward and backward propagation.

We adopt the momentum method when updating ai:

�ai := µ�ai + ✏
@E
@ai

. (4)

Here µ is the momentum and ✏ is the learning rate. It is
worth noticing that we do not use weight decay (l2 regular-
ization) when updating ai. A weight decay tends to push ai
to zero, and thus biases PReLU toward ReLU. Even without
regularization, the learned coefficients rarely have a magni-
tude larger than 1 in our experiments. Further, we do not
constrain the range of ai so that the activation function may
be non-monotonic. We use ai = 0.25 as the initialization
throughout this paper.

Comparison Experiments

We conducted comparisons on a deep but efficient model
with 14 weight layers. The model was studied in [10]
(model E of [10]) and its architecture is described in Ta-
ble 1. We choose this model because it is sufficient for rep-
resenting a category of very deep models, as well as to make
the experiments feasible.

As a baseline, we train this model with ReLU applied
in the convolutional (conv) layers and the first two fully-
connected (fc) layers. The training implementation follows
[10]. The top-1 and top-5 errors are 33.82% and 13.34% on
ImageNet 2012, using 10-view testing (Table 2).

2

ReLU       and     Parametric PReLU 
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Regularization 
•  i.e. Drop-Out 
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hyperparameters

Regularization

∙ Weight-decay (L2 penalty on large weights)
∙ Max column norms
∙ Dropout

24
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Feature Engineering 
•  Historically, features had to be 

manually extracted and provided as 
inputs to shallow models 

•  Deep learning paradigm shift: 
networks learn best features from 
raw data 
– Automatic feature extraction  

06/06/2019	 43	Sergei V. Gleyzer                                                  INFN Paestum Lectures	



Feature Extraction 
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Shallow 

Deep NN 
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Feature Extraction 
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Shallow 

Deep NN 

 Inherent Feature Extraction  
   Baldi et al., 2014 

 What is learned? 
 
•  Projections 

 
 
•  Filters  

Komiske et al., 2018 

Cogan et al., 2014 



Convolutional NN 
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introduction

Neural Network (NN) Deep NN Convolutional NN

5



       

47	

Convolutional Networks 
 
 

[x1 x2 x3…xi]T 
waveform	heights	
	

[x11 x12…x1n x21 x22…]T 
pixel	intensities	
	

Feature learning	
	

06/06/2019	
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Convolution Example 

Exploit structure, neighboring pixel dependence   



Convolutional Neural Networks: 
•  Began with image and sequence-based 

problems in computer vision 
–  Images (2D) 
– CNN’s learn features with simple structures 

•  Filters: repeatedly applied 
•  Unsupervised learning during first stage 

– Jet images and evolution 

Filters 
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Jet Images 
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L. de Oliveira  
et al., 2015 

Cogan et al., 
2014 

Convolutional Neural Networks 

Link to Computer Vision 
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Recurrent NN 
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introduction

Recurrent neural network

6

Cycles 
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Feedforward NNs

Convolutional NNs

Recurrent NNs

Recursive NNs

Memory NNs

Deep Belief Nets

Neural Turing Machines

Deep Q Learning
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Recursive-NNs 
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Louppe et al., 2017 

Cheng, 2017 
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                  Machine                  Learning 
  
	

 
                                      June 6-7, 2019 

	

      HACKATHON 
 

Large Hadron Collider 



LHC ML Hackathon 
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Challenge is to identify particles and 
events at the Large Hadron Collider  
•  Top accuracy wins 
•  Can use any algorithm or approach 
•  New machine learning ideas welcome 
•  Can form teams 
 

 

 



Two competitions 
1)  Identifying the Higgs Boson  

2)  Classifying Particle Images 
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1) Higgs Challenge 
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Dataset: 
•  https://archive.ics.uci.edu/ml/datasets/

HIGGS 
 
Paper with detailed description 
•  https://arxiv.org/pdf/1402.4735.pdf 
 

 
 

 

 



2) Particle Images 
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Dataset: 
•  Download from git 
•  32x32 Energy matrices 

 

Identify electrons from photons: 
•  With any algorithm (i.e. for example 

neural networks) 
 

 



Starter Kit 
	

06/06/2019	 Sergei V. Gleyzer                                                    LHC ML Hackathon	 59	

 

 
 
 

 

Download Starter Kit from git: 
•  https://github.com/iml-wg/

lhcmlhackathon 

Some Jupyter notebook examples 
in python on data visualization and 
basic classification  
 

 

 



Evaluation Criteria 
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Duration: 
•  Today – Friday 12pm 
 
Please provide solution 
•  Code or Jupyter notebook 
 
Best ROC curve wins  
•  Maximum area under the ROC curve 
 
 
 

 
 



Practical 
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•  Can use any algorithm, tool or 
resource 

•  Train using your own systems 
•  We provide basic cpus with 

Jupyter kernel 
•  A small starter kit with examples 

on how to visualize data and run 
some benchmark algorithms 

 
 
 

 

 



Jupyter Hub 
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• http://swan.cern.ch 
 
•  Temporary logins if needed 
 

 

 



More questions? 
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•  Slack channel:  

– http://bit.ly/2SxUV2C 
 

•  Email: 
– lhc-mlhackathon@cern.ch 

 
 

 

 



Winners 
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•  Announced tomorrow afternoon 
•  Good luck! 
 

 

 


