
 Machine Learning

 Sergei Gleyzer

	

 INFN Paestum Lectures
June 6, 2019

	

 Lecture I

Today’s Outline
Machine Learning
•  in Theory
•  in Practice

06/06/2019	 Sergei V. Gleyzer INFN Paestum Lectures	 2	

Machine Learning
 Basics

06/06/2019	 3	Sergei V. Gleyzer INFN Paestum Lectures	

06/06/2019	 4	Sergei V. Gleyzer INFN Paestum Lectures	

Machine Learning
What is Machine Learning?
•  Study of algorithms that

 improve their performance P
 for a given task T
 with more experience E

Sample tasks: identifying cats, particles

 06/06/2019	 Sergei V. Gleyzer INFN Paestum Lectures	 5	

Approach:	

Machine Learning

 Training data TD = {y, x} = (y,x)1…(y,x)N,

 Function space {f} and a constraint on

these functions

 Learn the mapping y = f(x)

06/06/2019	 Sergei V. Gleyzer INFN Paestum Lectures	 6	

Examples

06/06/2019	 Sergei V. Gleyzer INFN Paestum Lectures	 7	

•  Algorithms capable of
recognizing us from the digital
“traces” we leave behind

	

6

Choose
 Function space F = { f (x, w) }
 Constraint C
 Loss function* L

Method
 Find f (x) by minimizing the empirical risk R(w)
 subject to the constraint

 C(w)

F

f (x, w*)
C(w)

R[fw] = 1

N
L(yi , f (xi , w))

i=1

N

∑

*The loss function measures the cost of choosing badly

Machine Learning

06/06/2019	 Sergei V. Gleyzer INFN Paestum Lectures	 8	

Machine Learning

06/06/2019	 Sergei V. Gleyzer INFN Paestum Lectures	 9	

7

Many methods (e.g., neural networks, boosted decision trees,
rule-based systems, random forests,…) use the

 quadratic loss

and choose f (x, w*) by minimizing the
 constrained mean square empirical risk

 L(y, f (x, w)) = [y − f (x, w)]2

R[fw] = 1

N
[yi − f (xi ,w)]2

i=1

N

∑ + C(w)

History

06/06/2019	 Sergei V. Gleyzer INFN Paestum Lectures	 10	

World Wide Web is 30! Machine Learning in HEP is at least 30

Long history
•  First methods used in late 80s
•  Tevatron: pioneering ML efforts in the 90s
•  LHC Run 1: wide use shallow machine

learning (2009-2013)
•  Explosion of applications in all frontiers -

energy, intensity, cosmic, achieving state
of the art performance in various tasks
(2014 – present)

06/06/2019	 Sergei V. Gleyzer INFN Paestum Lectures	 11	

12

Optimality criterion: minimize the error rate, α + β!

Background density
p(x, b) = p(x | b) p(b)

Signal density
p(x, s) = p(x | s) p(s)

x

de
ns

ity

p

(x
)

x0

β#
α#

Classification Theory

12	06/06/2019	 Sergei V. Gleyzer INFN Paestum Lectures	

Classification in Practice

06/06/2019	 13	Sergei V. Gleyzer INFN Paestum Lectures	

In Particle Physics
06/06/2019	 14	Sergei V. Gleyzer INFN Paestum Lectures	

Higgs Boson
Discovery

15	

July 4, 2012

06/06/2019	 Sergei V. Gleyzer INFN Paestum Lectures	

16	

•  Particle Identification
•  Identification of interactions
•  Energy regression
•  Event selection

Improvement from all areas

06/06/2019	 Sergei V. Gleyzer INFN Paestum Lectures	

in Higgs Discovery

Identifying boosted objects

15'

vs'

Identifying boosted objects

15'

vs'

HEP Applications
Primarily Classification

– Particle Level:
•  Particle identification

 Photon or a jet?
•  Pattern recognition

 Tracks, vertices

– Event Level:
•  New Physics searches

 New Physics event or background?

06/06/2019	 Sergei V. Gleyzer INFN Paestum Lectures	 17	

 Imaging Techniques

Fast
Simulation

Relevant areas

18	

Tracking Object Identification

Trigger

⌘ �

b
ea
m

pre-process

convolutional layer

max-pooling

dense layer

quark jet

gluon jet

| {z }
⇥3

Figure 2: An illustration of the deep convolutional neural network architecture. The first

layer is the input jet image, followed by three convolutional layers, a dense layer and an

output layer.

The maxpooling layers performed a 2⇥2 down-sampling with a stride length of 2. The dense

layer consisted of 128 units.

All neural network architecture training was performed with the Python deep learning

libraries Keras [47] and Theano [48] on NVidia Tesla K40 and K80 GPUs using the NVidia

CUDA platform. The data consisted of the 100k jet images per pT -bin, partitioned into 90k

training images and 10k test images. An additional 10% of the training images are randomly

withheld as validation data during training of the model for the purposes of hyperparameter

optimization. He-uniform initialization [49] was used to initialize the model weights. The

network was trained using the Adam algorithm [50] using categorical cross-entropy as a loss

– 8 –

Event Level ID 06/06/2019	

ML Algorithms

06/06/2019	 Sergei V. Gleyzer INFN Paestum Lectures	 19	

•  Fisher, Quadratic
•  Naïve Bayes (Likelihood)
•  Kernel Density Estimation
•  Random Grid Search
•  Rule ensembles
•  Boosted decision trees
•  Random forests
•  Support vector machines
•  Genetic algorithms
•  Deep learning neural networks

If we use different covariance matrices for the signal and the
background densities, we obtain the quadratic discriminant:

 a fixed value of which defines a curved
 surface that partitions the space {x}
 into signal-rich and background-rich
 regions

30

λ(x) = (x − µb)T Σb
−1(x − µb)

− (x − µs)
T Σs

−1(x − µs)

decision
boundary

Linear and Quadratic

06/06/2019	 Sergei V. Gleyzer INFN Paestum Lectures	 20	
29

λ(x) = ln

G x | µs ,Σ()
G x | µb ,Σ() → w ⋅ x + c

Take p(x | s) and p(x | b) to be
Gaussian (and dropping the
constant term) yields

w ⋅ x + c > 0

w ⋅ x + c < 0

B(x) = p(x | s) p(s)

p(x | b) p(b)

w ∝ Σ−1(µs − µb)

decision boundary

Linear (Fisher) Quadratic

Decision
Boundaries

7

Function approximation

Problem Setting:
•  Set of possible instances X

•  Unknown target function f : XY

•  Set of function hypotheses H={ h | h : XY }

Input:

•  Training examples {<x(i),y(i)>} of unknown target function f

Output:
•  Hypothesis h ∈ H that best approximates target function f

superscript: ith training example

Each internal node: test one attribute Xi

Each branch from a node: selects one value for Xi

Each leaf node: predict Y (or P(Y|X ∈ leaf))

A Decision tree for

 F: <Outlook, Humidity, Wind, Temp> PlayTennis?

•  Decision trees are recursively constructed
multidimensional histograms
– Each leaf associated to the value (class)

of f(x) to be approximated

	

	

	

Decision Trees

06/06/2019	 Sergei V. Gleyzer INFN Paestum Lectures	 21	

Doctors: Decision Trees

06/06/2019	 Sergei V. Gleyzer INFN Paestum Lectures	 22	

Ensemble Methods
Suppose you have a collection of discriminants

f (x, wk), which, individually, perform only
marginally better than random guessing.

From such discriminants, weak learners, it is

possible to build highly effective ones by
averaging over them:

0
1

() (,)
K

k k
k

f x a a f x w
=

= +∑

Jerome Friedman & Bogdan Popescu (2008)
04/25/2019	 23	Sergei V. Gleyzer INFN Paestum Lectures	

Adaptive Boosting
AdaBoost (Freund & Shapire 1997)
•  Train in stages: adaptive weights
•  Misclassified events get a larger weight

going into the next training stage
–  Classify with a majority vote from all trees

•  Works very well to improve classification

power of “greedy” decision trees

04/25/2019	 24	Sergei V. Gleyzer INFN Paestum Lectures	

Repeat K times:
1.  Create a decision tree f (x, w)
2.  Compute its error rate ε on the weighted

training set
3.  Compute α = ln (1– ε) / ε
4.  Modify training set: increase weight of

incorrectly classified examples relative to the
weights of those that are correctly classified

Then compute weighted average f (x) = ∑ αk f (x, wk)

Y. Freund and R.E. Schapire (1997)

Adaptive Boosting

04/25/2019	 25	Sergei V. Gleyzer INFN Paestum Lectures	

Illustrative Example

04/25/2019	 26	Sergei V. Gleyzer INFN Paestum Lectures	

H à ZZ* à 4 leptons

 pp→ H → ZZ→ ℓ+ℓ− #ℓ + #ℓ −

Signal

 pp→ ZZ→ ℓ+ℓ− #ℓ + #ℓ −

Background mZ1

mZ2

04/25/2019	 27	

x = (mZ1, mZ2)
Sergei V. Gleyzer INFN Paestum Lectures	

First 6 Decision Trees

04/25/2019	 28	Sergei V. Gleyzer INFN Paestum Lectures	

First 100 Decision Trees

04/25/2019	 29	Sergei V. Gleyzer INFN Paestum Lectures	

Averaging over a Forest

04/25/2019	 30	Sergei V. Gleyzer INFN Paestum Lectures	

H to ZZ to 4Leptons

04/25/2019	 31	Sergei V. Gleyzer INFN Paestum Lectures	

06/06/2019	 Sergei V. Gleyzer INFN Paestum Lectures	 32	

HiggsML Challenge
First HEP-ML Challenge

Kaggle platform

Classification

1785 teams

35772 solutions

Tons of excitement

Winners: non-HEP!

06/06/2019	 33	

Diving Deeper

Sergei V. Gleyzer INFN Paestum Lectures	

06/06/2019	 34	

First DNN paper in HEP

HEP.TrkX 2019

Baldi, Sadowski, & Whiteson, 2014

Sergei V. Gleyzer INFN Paestum Lectures	

Artificial Neural Networks

x1	
x2	

06/06/2019	 Sergei V. Gleyzer INFN Paestum Lectures	 35	

06/06/2019	 Sergei V. Gleyzer INFN Paestum Lectures	 36	

	A Real Neuron

	Graphical Representation

f (x,w) = a + bj tanh cj + djixi
i=1

I

∑"

#
$

%

&
'

j=1

H

∑

n(x,	w)	

x1	

x2	

cj	

a)],(exp[1
1),(

wxf
wxn

−+
=

f is used for regression
n is used for classification
w = a, b, c, d

bj	
dji	

Hidden	Layer	

Output	Layer	

Input Layer

06/06/2019	 Sergei V. Gleyzer INFN Paestum Lectures	 37	

sigmoid

06/06/2019	 Sergei V. Gleyzer INFN Paestum Lectures	 38	

	Artificial Neuron

Identity: σ(X) = X

ReLU: σ(X) = max (0, x)

Sigmoidal: σ(X) = [1+exp(-x)]-1, σ(X) = tanhx

Adjustable Weights
Compute network weights with
•  Error gradients

Inputs forward
Errors go backward!

	
06/06/2019	 Sergei V. Gleyzer INFN Paestum Lectures	 39	

Deep Learning
•  Training more complex models

–  Increased Depth
– Novel activation functions: ReLU
– Specialized Architectures: Convolutional,

Recurrent, Graphs
•  Effective strategies to avoid over-

fitting (regularization)
– Data Augmentation, DropOut

06/06/2019	 40	Sergei V. Gleyzer INFN Paestum Lectures	

Feedforward NNs, cont’d
• Vanishing gradient!

• How do we fix that? ReLU!

• Local minima…

• Fix with Stochastic Optimization!

• Adam, RMSProp, Adagrad, etc

• Overtraining

• Dropout!

ReLU
Rectified Linear Unit (ReLU)
•  Rectified neuron
•  Faster training convergence

– Better solutions than sigmoids
•  Vanishing gradients

– Trained by

back-propagation

04/25/2019	 41	

f (y) = y

y

f (y)

f (y) = y

f (y) = ay

y

f (y)

f (y) = 0

Figure 1. ReLU vs. PReLU. For PReLU, the coefficient of the
negative part is not constant and is adaptively learned.

2. Approach
In this section, we first present the PReLU activation

function (Sec. 2.1). Then we derive our initialization
method for deep rectifier networks (Sec. 2.2). Lastly we
discuss our architecture designs (Sec. 2.3).

2.1. Parametric Rectifiers
We show that replacing the parameter-free ReLU activa-

tion by a learned parametric activation unit improves clas-
sification accuracy1.

Definition

Formally, we consider an activation function defined as:

f(yi) =

(
yi, if yi > 0

aiyi, if yi 0
. (1)

Here yi is the input of the nonlinear activation f on the ith
channel, and ai is a coefficient controlling the slope of the
negative part. The subscript i in ai indicates that we allow
the nonlinear activation to vary on different channels. When
ai = 0, it becomes ReLU; when ai is a learnable parameter,
we refer to Eqn.(1) as Parametric ReLU (PReLU). Figure 1
shows the shapes of ReLU and PReLU. Eqn.(1) is equiva-
lent to f(yi) = max(0, yi) + ai min(0, yi).

If ai is a small and fixed value, PReLU becomes the
Leaky ReLU (LReLU) in [20] (ai = 0.01). The motiva-
tion of LReLU is to avoid zero gradients. Experiments in
[20] show that LReLU has negligible impact on accuracy
compared with ReLU. On the contrary, our method adap-
tively learns the PReLU parameters jointly with the whole
model. We hope for end-to-end training that will lead to
more specialized activations.

PReLU introduces a very small number of extra param-
eters. The number of extra parameters is equal to the total
number of channels, which is negligible when considering
the total number of weights. So we expect no extra risk
of overfitting. We also consider a channel-shared variant:

1Concurrent with our work, Agostinelli et al. [1] also investigated
learning activation functions and showed improvement on other tasks.

f(yi) = max(0, yi) + amin(0, yi) where the coefficient is
shared by all channels of one layer. This variant only intro-
duces a single extra parameter into each layer.

Optimization

PReLU can be trained using backpropagation [17] and opti-
mized simultaneously with other layers. The update formu-
lations of {ai} are simply derived from the chain rule. The
gradient of ai for one layer is:

@E
@ai

=
X

yi

@E
@f(yi)

@f(yi)

@ai
, (2)

where E represents the objective function. The term @E
@f(yi)

is the gradient propagated from the deeper layer. The gradi-
ent of the activation is given by:

@f(yi)

@ai
=

(
0, if yi > 0

yi, if yi 0
. (3)

The summation
P

yi
runs over all positions of the feature

map. For the channel-shared variant, the gradient of a is
@E
@a =

P
i

P
yi

@E
@f(yi)

@f(yi)
@a , where

P
i sums over all chan-

nels of the layer. The time complexity due to PReLU is
negligible for both forward and backward propagation.

We adopt the momentum method when updating ai:

�ai := µ�ai + ✏
@E
@ai

. (4)

Here µ is the momentum and ✏ is the learning rate. It is
worth noticing that we do not use weight decay (l2 regular-
ization) when updating ai. A weight decay tends to push ai
to zero, and thus biases PReLU toward ReLU. Even without
regularization, the learned coefficients rarely have a magni-
tude larger than 1 in our experiments. Further, we do not
constrain the range of ai so that the activation function may
be non-monotonic. We use ai = 0.25 as the initialization
throughout this paper.

Comparison Experiments

We conducted comparisons on a deep but efficient model
with 14 weight layers. The model was studied in [10]
(model E of [10]) and its architecture is described in Ta-
ble 1. We choose this model because it is sufficient for rep-
resenting a category of very deep models, as well as to make
the experiments feasible.

As a baseline, we train this model with ReLU applied
in the convolutional (conv) layers and the first two fully-
connected (fc) layers. The training implementation follows
[10]. The top-1 and top-5 errors are 33.82% and 13.34% on
ImageNet 2012, using 10-view testing (Table 2).

2

ReLU and Parametric PReLU

Sergei V. Gleyzer INFN Paestum Lectures	

Regularization
•  i.e. Drop-Out

04/25/2019	 42	

hyperparameters

Regularization

∙ Weight-decay (L2 penalty on large weights)
∙ Max column norms
∙ Dropout

24
Sergei V. Gleyzer INFN Paestum Lectures	

Feature Engineering
•  Historically, features had to be

manually extracted and provided as
inputs to shallow models

•  Deep learning paradigm shift:
networks learn best features from
raw data
– Automatic feature extraction

06/06/2019	 43	Sergei V. Gleyzer INFN Paestum Lectures	

Feature Extraction

4/26/2019	 44	

Shallow

Deep NN

Sergei V. Gleyzer INFN Paestum Lectures	

Feature Extraction

06/06/2019	 Sergei V. Gleyzer INFN Paestum Lectures	 45	

Shallow

Deep NN

 Inherent Feature Extraction
 Baldi et al., 2014

 What is learned?

•  Projections

•  Filters

Komiske et al., 2018

Cogan et al., 2014

Convolutional NN

06/06/2019	 Sergei V. Gleyzer INFN Paestum Lectures	 46	

introduction

Neural Network (NN) Deep NN Convolutional NN

5

47	

Convolutional Networks

[x1 x2 x3…xi]T
waveform	heights	
	

[x11 x12…x1n x21 x22…]T
pixel	intensities	
	

Feature learning	
	

06/06/2019	

06/06/2019	 Sergei V. Gleyzer INFN Paestum Lectures	 48	

Convolution Example

Exploit structure, neighboring pixel dependence

Convolutional Neural Networks:
•  Began with image and sequence-based

problems in computer vision
–  Images (2D)
– CNN’s learn features with simple structures

•  Filters: repeatedly applied
•  Unsupervised learning during first stage

– Jet images and evolution

Filters

06/06/2019	 Sergei V. Gleyzer INFN Paestum Lectures	 49	

Jet Images
	

06/06/2019	 50	

L. de Oliveira
et al., 2015

Cogan et al.,
2014

Convolutional Neural Networks

Link to Computer Vision

Sergei V. Gleyzer INFN Paestum Lectures	

Recurrent NN

04/25/2019	 51	

introduction

Recurrent neural network

6

Cycles

Sergei V. Gleyzer INFN Paestum Lectures	

Feedforward NNs

Convolutional NNs

Recurrent NNs

Recursive NNs

Memory NNs

Deep Belief Nets

Neural Turing Machines

Deep Q Learning

04/25/2019	 52	

Recursive-NNs

05/30/2019	 53	

Louppe et al., 2017

Cheng, 2017
Sergei V. Gleyzer INFN Paestum Lectures	

 Machine Learning

	

 June 6-7, 2019

	

 HACKATHON

Large Hadron Collider

LHC ML Hackathon
	

06/06/2019	 Sergei V. Gleyzer LHC ML Hackathon	 55	

Challenge is to identify particles and
events at the Large Hadron Collider
•  Top accuracy wins
•  Can use any algorithm or approach
•  New machine learning ideas welcome
•  Can form teams

Two competitions
1)  Identifying the Higgs Boson

2)  Classifying Particle Images

06/06/2019	 Sergei V. Gleyzer LHC ML Hackathon	 56	

1) Higgs Challenge
	

06/06/2019	 Sergei V. Gleyzer LHC ML Hackathon	 57	

Dataset:
•  https://archive.ics.uci.edu/ml/datasets/

HIGGS

Paper with detailed description
•  https://arxiv.org/pdf/1402.4735.pdf

2) Particle Images
	

06/06/2019	 Sergei V. Gleyzer LHC ML Hackathon	 58	

Dataset:
•  Download from git
•  32x32 Energy matrices

Identify electrons from photons:
•  With any algorithm (i.e. for example

neural networks)

Starter Kit
	

06/06/2019	 Sergei V. Gleyzer LHC ML Hackathon	 59	

Download Starter Kit from git:
•  https://github.com/iml-wg/

lhcmlhackathon

Some Jupyter notebook examples
in python on data visualization and
basic classification

Evaluation Criteria
	

06/06/2019	 Sergei V. Gleyzer LHC ML Hackathon	 60	

Duration:
•  Today – Friday 12pm

Please provide solution
•  Code or Jupyter notebook

Best ROC curve wins
•  Maximum area under the ROC curve

Practical
	

06/06/2019	 Sergei V. Gleyzer LHC ML Hackathon	 61	

•  Can use any algorithm, tool or
resource

•  Train using your own systems
•  We provide basic cpus with

Jupyter kernel
•  A small starter kit with examples

on how to visualize data and run
some benchmark algorithms

Jupyter Hub
	

06/06/2019	 Sergei V. Gleyzer LHC ML Hackathon	 62	

• http://swan.cern.ch

•  Temporary logins if needed

More questions?
	

06/06/2019	 Sergei V. Gleyzer LHC ML Hackathon	 63	

•  Slack channel:

– http://bit.ly/2SxUV2C

•  Email:
– lhc-mlhackathon@cern.ch

Winners
	

06/06/2019	 Sergei V. Gleyzer LHC ML Hackathon	 64	

•  Announced tomorrow afternoon
•  Good luck!

