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Outline

What this lecture is not

A detailed math and statistics class, a programming course

What this lecture tries to be

An overview of statistical methods for prediction

Part 1 (1.5h)

• Statistical learning: supervised and unsupervised

• Model bias and variance and the risk of overfitting

• Cross-validation

Part 2 (1.5h)

• The model versus the modeling process

• Ensemble learning: bagging, random forest and boosting

• Regularized regression: ridge and lasso

If anything is unclear, just ask
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Evolution of multivariate statistics

Classic

• Multivariate Analysis

Books by Anderson (1958) and Mardia, Kent & Bibby (1979)

• Statistical Modeling

Nelder & Wedderburn (1972) paper on GLM

Computer-age

• Data Mining ≈ process of discovering patterns in data

• Machine Learning ≈ algorithms that can learn from data

Modern

• Statistical Learning

Hastie,Tibshirani & Friedman (2001) book

• Data Science



Statistics versus machine learning

From Robert Tibshirani



Statistics versus machine learning

From Robert Tibshirani



The two cultures

Breiman (2001)

Breiman distinguished between

Statistical modeling

• emphasis on probability models

• the goal is explanation

Machine learning

• emphasis on algorithms

• the goal is prediction accuracy

Today: Data Science vs. Statistics: Two Cultures?

Carmichael and Marron (2018)

http://www2.math.uu.se/~thulin/mm/breiman.pdf
https://arxiv.org/pdf/1801.00371.pdf


To explain or to predict?

Shmueli (2010)

True model

Y = β1X1 + β2X2 + ε

Underspecified model

Y = γ1X1 + ε

Explanation requires estimating the coefficients of the true model,

but a wrong model can sometimes predict better :

• when the predictors X1 and X2 are highly correlated

• when the data are very noisy

• when β2 is small

https://www.stat.berkeley.edu/~aldous/157/Papers/shmueli.pdf


Outline

1 Statistical learning

2 Model bias and variance

3 Cross-validation

4 Nonparametric methods



Statistical learning

Unsupervised learning

• the data consists of variables X1, . . . ,Xp; no variable has a

special status

• the goal is

• dimensionality reduction
• clustering
• etc.

Supervised learning

• the data consists of response Y and predictors X1, . . . ,Xp

• the goal is prediction of the response:

• Y continuous : regression problem
• Y binary/multiclass: classification problem



Data matrix

variable X1 · · · variable Xj · · · variable Xp
observation 1 x11 · · · x1j · · · x1p
observation 2 x21 · · · x2j · · · x2p

· · · · · · · · · · · · · · · · · ·
observation i xi1 · · · xij · · · xip

· · · · · · · · · · · · · · · · · ·
observation n xn1 · · · xnj · · · xnp

• n = number of observations

• p = number of variables



Dimensionality reduction

X
n×p
7→ Y
n×q

q < p

such that the transformed data Y retains most of the information

Principal Components Analysis (PCA)

Linear transformation

Yq = X̃Vq

where

• X̃ is the centered matrix

• the columns of Vq are the q eigenvectors with largest

eigenvalues of the variance/covariance matrix n−1X̃TX̃



Image compression with PCA

X
243×220 YqV

T
q + 1x̄T q = 10



Cluster analysis
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Supervised learning

Machine Learning Statistics

target variable Y response variable

attribute, feature X predictor

hypothesis Y = f (X ) + ε model

instances, examples (y1, x1), . . . , (yn, xn) observations

learning f̂ = arg min
f ∈F

n∑
i=1

loss(yi , f (xi)) estimation

classification ŷ = f̂ (x) prediction

generalization error E[ loss(Y , f̂ (X )) ] prediction error



Models overview

Linear regression 3

Logistic regression 3

Linear discriminant analysis 7

k-nearest neighbors 3

Decision trees 3

Naive Bayes 7

Bagging 3

Random forest 3

Boosting 3

Ridge regression 3

Lasso 3

Generalized additive models 7

Support vector machines 7

Neural networks 7

Deep learning 7



Flexibility versus interpretability

Flexibility

In
te

rp
re

ta
b
ili

ty

Low High

L
o
w

H
ig

h Subset Selection
Lasso

Least Squares

Generalized Additive Models
Trees

Bagging, Boosting

Support Vector Machines



SUMMARY: statistical learning

• Learning: unsupervised / supervised

• Goal: to explain / to predict

• Prediction problem: regression / classification

• Models: interpretable / black-box



Important concepts

• Model bias and variance and the risk of overfitting

• Cross-validation

• Nonparametric methods
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Training and test

Training set

(x1, y1), . . . , (xi , yi), . . . , (xn, yn)

Test set

(x1, y
∗
1 ), . . . , (xi , y

∗
i ), . . . , (xn, y

∗
n )

where x1, . . . , xn are treated as fixed. In matrix notation:

y
n×1

=


y1
· · ·
yi
· · ·
yn

 , X
n×p

=


x1
· · ·
xi
· · ·
xn

 =


x11 · · · x1j · · · x1p
· · · · · · · · · · · ·
xi1 · · · xij · · · xip
· · · · · · · · · · · ·
xn1 · · · xnj · · · xnp





Signal and noise

Here y1, . . . , yn are realizations of the random variables

Yi = f (xi) + εi , i = 1, . . . , n

• f is the regression function (signal)

• ε is the error (noise)

ε1, . . . , εn i.i.d. with E(ε) = 0 and Var(ε) = σ2



Training set
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Regression function
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Error
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Mean squared error

• Loss function = mean squared error (MSE)

• Suppose we have estimated f by f̂ by using the training set

• We can compute the MSE on the training set

MSETr =
1

n

n∑
i=1

(yi − f̂ (xi))2

• But the goal is to have a low MSE on the test set

MSETe =
1

n

n∑
i=1

(y∗i − f̂ (xi))2



Polynomial regression

• Polynomial regression model of degree d :

f (x) = β0 + β1x + β2x
2 + . . .+ βdx

d

• Use the training set to estimate f :

f̂ (x) = β̂0 + β̂1x + β̂2x
2 + . . .+ β̂dx

d

• The degree d is a tuning parameter: small and large d

corresponds to low and high flexibility, respectively

• Goal: find the degree d that minimizes the prediction error

Err = E(MSETe) = E

{
1

n

n∑
i=1

[Y ∗i − f̂ (xi)]2

}
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Overfitting

x

y

mistaking noise for signal



Prediction error

Sources of error:

• Irreducible error

Can we ever predict Y from X with zero error? No. Even

the true regression function f cannot do this

• Estimation bias

What happens if our fitted function f̂ belongs to a model

class that is far from the true f ? E.g. we choose to fit a

regression line in a setting where the true relationship is far

from linear?

• Estimation variance

What happens if our fitted function f̂ is itself quite variable?

In other words, over different copies of the training data, we

end up constructing substantially different f̂ ?



Reducible and irreducible error

The prediction error

Err = E(MSETe) =
1

n

n∑
i=1

E
{

[Y ∗i − f̂ (xi)]2
}

depends on two quantities, the reducible error and the

irreducible error:

E{[Y ∗i − f̂ (xi)]2} = E{[f (xi)− f̂ (xi)]2}+ Var(ε∗i )
= E{[f (xi)− f̂ (xi)]2}︸ ︷︷ ︸

Reducible

+ σ2︸︷︷︸
Irreducible



Bias-variance decomposition

The reducible error can be decomposed into (squared) bias and

variance of f̂

E{[f (xi)− f̂ (xi)]2} = [f (xi)− Ef̂ (xi)]2︸ ︷︷ ︸
Bias2

+Var[f̂ (xi)]︸ ︷︷ ︸
Variance

Summing up, we have

Err =
1

n

n∑
i=1

[f (xi)− Ef̂ (xi)]2 +
pσ2

n
+ σ2
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Bias-variance trade-off

Bias and variance are conflicting entities, and we cannot minimise

both simultaneously:

• Models f̂ with low bias tend to have high variance

• Models f̂ with low variance tend to have high bias

• Even if our prediction is unbiased, i.e. Ef̂ (xi) = f (xi), we can

still incur a large error if it is highly variable

• On the other hand, f̂ (xi) = 0 has 0 variance but will be

terribly biased

To predict well, we must therefore choose a trade-off between

bias and variance





SUMMARY: bias-variance tradeoff

• Data: training set / test set

• Signal/noise: regression function / error

• Performance: MSE on the same data / MSE on new data

• Overfitting: mistaking noise for signal

• Prediction error: reducible + irreducible

• Reducible error: bias2 + variance

• Tradeoff: allow some bias if it decreases more variance
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Optimism

Optimism is the expected difference of the test error and training

error

Opt = E(MSETe)− E(MSETr)

Optimism is important because an estimate of optimism leads to

an estimate of prediction error

̂E(MSETe) = MSETr + ÔptF

For the linear model

Opt =
2σ2p

n

it gives Mallows’ Cp

Cp = MSETr +
2σ̂2p

n
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AIC and BIC

• AIC is given by

AIC = −2`(β̂, σ̂2) + 2p

where ` is the loglikelihood. For the linear model

−2`(β̂, σ̂2) = n log(MSETr)

• For linear models, Cp and AIC are proportional to each

other, and the lowest Cp corresponds to the lowest AIC

• BIC is given by

BIC = −2`(β̂, σ̂2) + log(n)p

• Since log(n) > 2 for any n > 7, the BIC statistic generally

results in the selection of smaller models than AIC



Cross-validation

• Training an algorithm and evaluating its statistical

performance on the same data yields an overoptimistic result

• Cross-validation (CV) is based on the idea of splitting the

data: part of data (the training set) is used for training the

algorithm, and the remaining data (the validation set) are

used for evaluating the performance of the algorithm

• The major interest of CV lies in the universality of the data

splitting heuristics. Therefore, CV is a non-parametric

method which can be applied to any algorithm in any

framework. This universality is not shared by e.g. Cp, which

is specific to linear regression



Validation set approach

• A simple approach is to randomly divide the n observations

into two parts: a training set and a validation or hold-out set

 !"!#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!$!

%!!""!! #!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!& !

• The model is fitted on the training set T ⊂ {1, . . . , n}, and

the fitted model f̂ −V is used to predict the responses for the

observations in the validation set V = {1, . . . , n} \ T
• This results in the estimate of the expected test error

Êrr =
1

#V

∑
i∈V

[yi − f̂ −V (xi)]2

• This scheme reduces the sample size used for fitting the

model, but this is not a problem when n is very large. If n is

not very large, however, the validation estimate of the test

error can be highly variable



K-fold CV
• Split the data into equal parts V1, . . . ,VK :

 !"!#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!$!

  !%&!'!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!(%!

  !%&!'!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!(%!

  !%&!'!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!(%!  !%&!'!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!(%!

  !%&!'!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!(%!

  !%&!'!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!(%!

• Use observations i /∈ Vk for training the model and i ∈ Vk for

evaluating it:
1

#Vk

∑
i∈Vk

[yi − f̂ −Vk (xi)]2

• Take the average to estimate the expected test error:

Êrr =
1

K

K∑
k=1

 1

#Vk

∑
i∈Vk

(yi − f̂ −Vk (xi))2





Leave-one-out CV
Each data point is left out and used for validation:

 !"!#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!$!

 !"!#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!$!

 !"!#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!$!

 !"!#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!$!

 !"!#!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!$!

%!

%!

%!

For i = 1, . . . , n:

• Hold out the ith training observation (xi , yi)

• Use n − 1 observations for training the model f̂ −i and the

hold-out observation (xi , yi) to evaluate it by (yi − f̂ −i(xi))2

Take the average to estimate the expected test error:

Êrr =
1

n

n∑
i=1

[yi − f̂ −i(xi)]2



Generalized CV

For the linear model, there is a shortcut for computing LOOCV:

1

n

n∑
i=1

(
yi − f̂ −i(xi)

)2
=

1

n

n∑
i=1

(
yi − f̂ (xi)

1− hi

)2
where hi is the ith diagonal element of the projection matrix

H
n×n

= X(XTX)−1XT

In generalized cross-validation we compute

Êrr =
MSETr(
1− pn

)2
where we approximate each hi by their average 1n

∑n
i=1 hi = p

n
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CV bias-variance tradeoff

• A common choice for K other than K = n is to choose

K = 5 or K = 10

• Bias: K -fold CV with K = 5 or 10 gives a biased (upward)

estimate of E(MSETe) because it uses less information (4/5

or 9/10 of the observations). LOOCV has very low bias (it

uses n − 1 observations)

• Variance: Usually, LOOCV has high variance because it is an

average of n extremely correlated quantities (because the fits

f̂ −i and f̂ −j are based on n − 2 common observations), and

K -fold CV with K = 5 or 10 has less variance because it is

an average of quantities that are less correlated. Remember

that the variance of the sum of highly correlated quantities is

larger than that with midly correlated quantities:

Var(A+ B) = Var(A) + Var(B) + 2Cov(A,B)

• However, drawing a general conclusion on CV is nearly an

impossible task because of the variety of frameworks



SUMMARY: optimism and cross-validation

• Optimism: test MSE - training MSE

• Cp, AIC and BIC: training MSE + penality for complexity

• Cross-validation: model-free approach based on data split

• Types: validation set, K -fold, leave-one-out, generalized
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Nonparametric methods

• Nonparametric methods do not make explicit assumptions

about the functional form of f (e.g. polynomials)

• Leave data to speak for themselves in a free way

• Advantage: by avoiding the assumption of a particular

functional form for f , they have a wider range of possible

shapes for f

• Disadvantage: since they do not reduce the problem of

estimating f to a small number of parameters, a very large

number of observations is required



k-nearest neighbors

• A very simple and quite commonly used method k-nearest

neighbors (kNN)

• Suppose we want to make a prediction at some x∗1 . Define

the neighbourhood Nk(x∗1 ) to be the set of k training

observations having values xi closest to x∗1 in Euclidean norm

‖xi − x∗1‖

f̂ (x∗1 ) =
1

k

∑
i∈Nk (x∗1 )

yi

• The number k is a tuning parameter: small and large k

corresponds to a more and less flexible fit, respectively

• Since we are computing a distance, usually we center and

scale the predictors
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kNN for classification
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Too flexible Not flexible enough

Figure from Gareth, Witten, Hastie & Tibshirani (2013)



SUMMARY: nonparametric methods

• Nonparametric: very flexible but more observations needed

• kNN: look at the neighbors

• Tuning parameter: k defines flexibility

• Neighbors distance: center and scale the predictors

• Curse of dimensionality: closeness difficult in high

dimensions


