Multivariate Analysis, I 2nd part

Aldo Solari

INFN School of Statistics

Paestum, June 6, 2019

Important concepts

- The model versus the modeling process
- Ensemble learning: bagging, random forests and boosting
- Regularized regression: ridge and lasso

Outline

- **1** The modeling process
- 2 Titanic data
- 3 Ensemble learning
- 4 Regularized regression

No free lunch

- The **No Free Lunch Theorem** (Wolpert 1996) is the idea that, without any specific knowledge of the problem or data at hand, *no one predictive model can be said to be the best*
- In practice, it is wise to try a number of disparate types of models to probe which ones will work well with your particular data set

The model versus the modeling process

- The modeling technique is a **small part** of the overall process
- The process of developing an effective model is both **iterative** and **heuristic**
- It is difficult to know the needs of any data set prior to working with it
- It is common for many approaches to be evaluated and modified before a model can be finalized

The modeling process

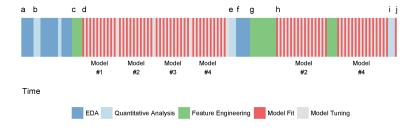


Image from Kuhn & Johnson (2019)

Common steps

Pre-processing and exploratory data analysis

- Handling missing data
- Exploring the relationships among the predictors and between predictors and the response
- Feature engineering
- Etc.

Model building

- Evaluating performance
- Parameter tuning
- Feature selection
- Etc.

Outline

- **1** The modeling process
- 2 Titanic data
- 3 Ensemble learning
- 4 Regularized regression

Titanic data

On April 15, 1912, during her maiden voyage, the Titanic sank after colliding with an iceberg, killing 809 out of 1309 passengers

- Training set of n = 891 passengers, each with p = 10 predictors
- The goal is to predict a 0 or 1 value for the survived variable for the m=418 passengers in the test set

Classification

- Response $Y \in \{0, 1\}$
- Predictors $X = (X_1, ..., X_p)^T$
- (X, Y) have some unknown joint distribution
- The regression function is

$$f(x) = \mathbb{E}(Y|X=x) = \Pr(Y=1|X=x)$$

• The Bayes' classification rule is

$$C(x) = \begin{cases} 1 & \text{if } f(x) > 1/2 \\ 0 & \text{otherwise} \end{cases}$$

Bayes error rate

- A classification rule is any function $\hat{C}: x \mapsto \{0, 1\}$
- For example, the plug-in rule

$$\hat{C}(x) = \begin{cases} 1 & \text{if } \hat{f}(x) > 1/2 \\ 0 & \text{otherwise} \end{cases}$$

where \hat{f} is an estimate of f based on training data

 The Bayes classification rule is optimal because it has the smallest error rate:

$$\mathbb{E}\left[\Pr(Y\neq C(x))\right] \leq \mathbb{E}\left[\Pr(Y\neq \hat{C}(x))\right] \quad \forall \; \hat{C}$$

where the expectation averages the probability over all possible values of \boldsymbol{X}

• The Bayes error rate $\mathbb{E}\left[\Pr(Y \neq C(x))\right]$ is analogous to the irreducible error

Missclassification rate and accuracy

- Training set: $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$
- Test set: $(x_1^*, y_1^*), (x_2^*, y_2^*), \dots, (x_m^*, y_m^*)$
- Missclassification rate

$$\operatorname{Err}_{\operatorname{Tr}} = \frac{1}{n} \sum_{i=1}^{n} I\{y_i \neq \hat{c}(x_i)\}\$$

$$\text{Err}_{\text{Te}} = \frac{1}{m} \sum_{i=1}^{m} I\{y_i^* \neq \hat{c}(x_i^*)\}$$

Accuracy

$$Acc_{Te} = 1 - Err_{Te}$$

Type of variables

pclass Passenger Class (1 = 1st; 2 = 2nd; 3 = 3rd)

survived | Survival (0 = No; 1 = Yes)

name Name

sex Gender (male/female)

age Age

sibsp Number of Siblings/Spouses Aboard Number of Parents/Children Aboard

ticket Ticket Number fare Passenger Fare

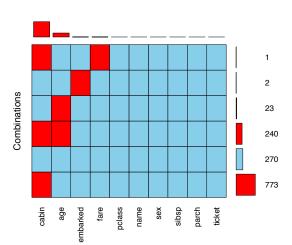
cabin Cabin

embarked | Port of Embarkation

(C = Cherbourg; Q = Queenstown; S = Southampton)

Missing values

Predictor	Missing
cabin	1014
age	263
embarked	2
fare	1



Imputing missing values

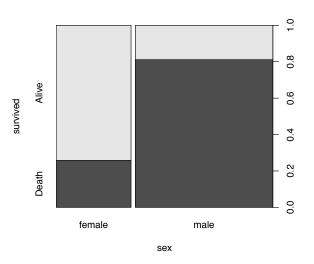
survived	name	pclass	sex	age	ticket
0	Storey, Mr. Thomas	3	male	60.50	3701
-					
	sibsp	parch	fare	cabin	embarked
	0	0	?	?	S

Imputing missing values

_	survived	name	pclass	sex	age	ticket
_	0	Storey, Mr. Thomas	3	male	60.50	3701
		sibsp	parch	fare	cabin	embarked
		0	0	?	?	S

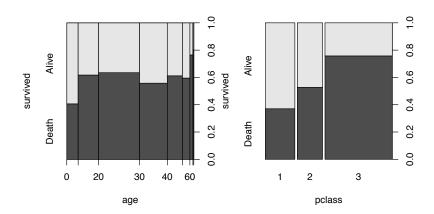
pclass	embarked	median fare
1	С	76.73
2	C	15.31
3	C	7.90
1	Q	90.00
2	Q	12.35
3	Q	7.75
1	S	52.00
2	S	15.38
3	S	8.05

Gender

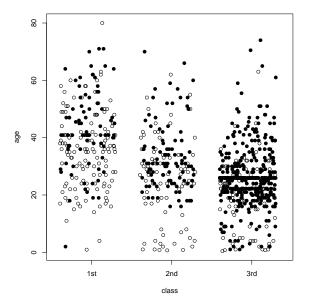


Women first. What about children?

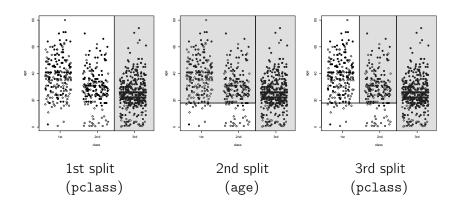
Age and pclass



Age and pclass combined

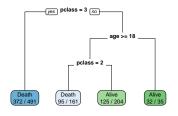


Classification tree



Classification trees recursively partition the sample space into smaller and smaller rectangles

Classification rule

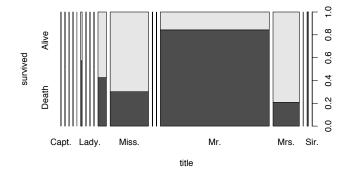


	Pr(Death)	Prediction
Class 3	76%	Death
Class 1-2, younger than 18	9%	Alive
Class 2, older than 18	56%	Death
Class 1, older than 18	39% 👢	Alive

Feature engineering: title

Braund, **Mr.** Owen Harris Cumings, **Mrs.** John Bradley Heikkinen, **Miss.** Laina Palsson, **Master.** Gosta Leonard

. .



Performance

Predictors	$\mathrm{Acc}_{\mathrm{Tr}}$	$\mathrm{Acc}_{\mathrm{Te}}$
-	61.6%	62.2%
age	61.6%	62.2%
pclass	67.9%	67.2%
sex	78.7%	76.6%
age + pclass	70.9%	67.2%
age + sex	78.7%	76.6%
pclass + sex	78.7%	77.5%
age + pclass + sex	80.2%	76.6%
pclass + title	80.0%	78 . 5 %

Titanic: summary

- Missing values: fare as a function of pclass and embarked
- Exploratory data analysis: sex, age and pclass
- Feature engineering: title from name
- **Performance**: title incorporates information about age (many missing values) and gender better

Outline

- **1** The modeling process
- 2 Titanic data
- **3** Ensemble learning
- 4 Regularized regression

Ensemble of trees

- Classification and regression trees are simple and useful for interpretation
- However they are not competitive with other approaches in terms of prediction accuracy
- Ensemble methods such as bagging, random forest and boosting grow multiple trees which are then combined to yield a single prediction
- Combining a large number of trees often result in improved prediction accuracy at the expense of interpretability

Instability of trees

- The primary disadvantage of trees is that they are rather unstable (high variance)
- In other words, a small change in the data often results in a completely different tree
- One major reason for this instability is that if a split changes, all the splits under it change as well, thereby propagating the variability
- Idea: **averaging** a set of variables (trees) reduces the variance: if T_1, \ldots, T_B i.i.d. with $\mathbb{V}ar(T_i) = \sigma^2$, then

$$\operatorname{Var}(\bar{T}) = \frac{\sigma^2}{n}$$

where
$$\bar{T} = \frac{1}{B} \sum_{i=1}^{B} T_i$$

• Problem: we need B copies of the training data

The bootstrap

• A bootstrap sample of size *n* from the training data is

$$(\tilde{x}_1, \tilde{y}_1), (\tilde{x}_2, \tilde{y}_2), \ldots, (\tilde{x}_n, \tilde{y}_n)$$

where each $(\tilde{x}_i, \tilde{y}_i)$ are drawn from uniformly at random from

$$(x_1, y_1), (x_2, y_2), \ldots, (x_n, x_n)$$

with replacement

 Not all of the training points are represented in a bootstrap sample, and some are represented more than once. For large n, the probability for one observation not to be drawn in any of the n draws is

$$\lim_{n \to \infty} \left(1 - \frac{1}{n} \right)^n = \frac{1}{e} \approx 0.368$$

We can expect $\approx 1/3$ of the *n* original observations to be **out-of-bag** (OOB)

Bootstrap aggregation (bagging)

1 Generate *B* different bootstrapped training sets

$$(\tilde{x}_1^b, \tilde{y}_1^b), (\tilde{x}_2^b, \tilde{y}_2^b), \dots, (\tilde{x}_n^b, \tilde{y}_n^b), \qquad b = 1, \dots, B$$

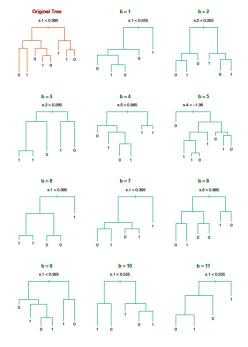
- **2** Fit a regression tree \hat{f}^b or a classification tree \hat{c}^b for each bootstrapped training set
- 3 Average all the predictions:

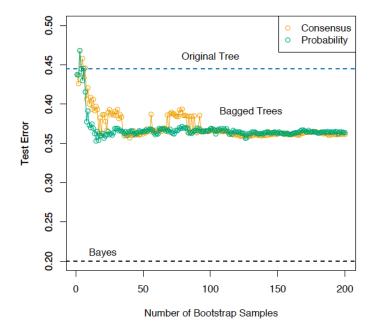
$$\bar{f}(x) = \frac{1}{B} \sum_{b=1}^{B} \hat{f}^b(x)$$

for regression trees and

$$\bar{c}(x) = \operatorname{Mode}\{\hat{c}^b(x), b = 1, \dots, B\}$$

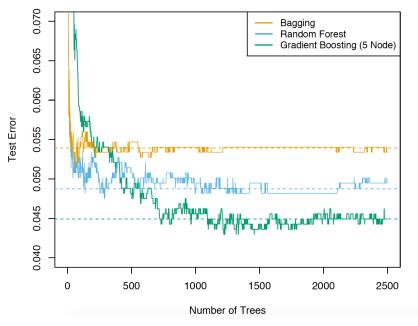
for classification trees (consensus)





Random forest

- Random forest creates even more variation in individual trees
- Do as bagging, but before each split, select m predictors at random as candidates for splitting
- Typically the tuning parameter m is \sqrt{p} for classification and p/3 for regression



Why random forest works?

- Trees T_1, \ldots, T_B constructed on B bootstrap copies of the training data are correlated
- Random sampling of the predictors **decorrelates** the trees. This reduces the variance when we average the trees
- Given a set of identical distributed (but not necessarily independent) variables T_1, \ldots, T_B with pairwise correlation $\mathbb{C}\mathrm{orr}(T_j, T_l) = \rho$, mean $\mathbb{E}(T_j) = \mu$ and variance $\mathbb{V}\mathrm{ar}(T_j) = \sigma^2$, then

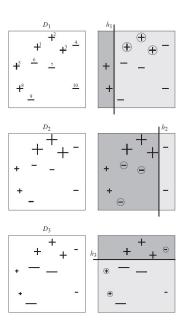
$$\operatorname{Var}(\bar{T}) = \rho \sigma^2 + \frac{(1-\rho)}{B} \sigma^2$$

• The idea in random forests is to improve the variance reduction of bagging by reducing the correlation ρ between the trees, without increasing the variance σ^2 too much

Boosting

- 1st algorithm: **adaboost** (Freund and Schapire, 1997) for classification problems
- It starts by fitting a classification tree with a single split (stump) to the training data
- Next, the classification tree is re-fitted, but with more weight given to misclassified observations
- This process is repeated until some stopping rule is reached

Toy example



Classification rule

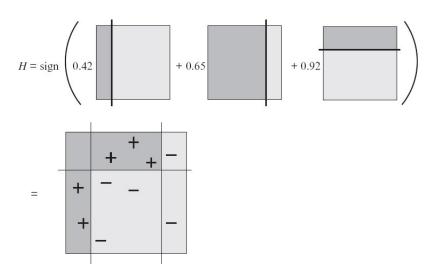


Image from Freund & Schapire

Ensemble learning: summary

- Idea: combining multiple trees at the expense of interpretability
- Bagging: use bootstrap to construct many trees
- **Random forest**: decorrelate the trees by randomly selecting predictors
- **Boosting**: iterative fitting with more weight to misclassified observations

Outline

- 1 The modeling process
- 2 Titanic data

- 3 Ensemble learning
- 4 Regularized regression

Linear regression

Training and test data

$$\mathbf{y}$$
, \mathbf{X} \mathbf{y}^* , \mathbf{X}^* $m \times p$

• Least squares problem:

$$\min_{oldsymbol{eta} \in \mathbb{R}^p} \|\mathbf{y} - \mathbf{X} oldsymbol{eta}\|^2$$

- Normal equations: $\mathbf{X}^{\mathsf{T}}\mathbf{X}\boldsymbol{\beta} = \mathbf{X}^{\mathsf{T}}\mathbf{y}$
- Least squares estimator:

$$\hat{oldsymbol{eta}}_{
ho imes1} = (\mathbf{X}^{ op}\mathbf{X})^{-1}\mathbf{X}^{ op}\mathbf{y}$$

- Fitted values: $\hat{\mathbf{y}}_{n\times 1} = \mathbf{X}\hat{\boldsymbol{\beta}}$
- Prediction on test data: $\hat{\mathbf{y}}^* = \mathbf{X}^* \hat{\boldsymbol{\beta}}$

The failure of least squares in high dimensions

- When $rank(\mathbf{X}) < p$, e.g. this happens when p > n, there are infinitely many solutions in the least square problem
- Suppose p > n and rank(X) = n. Let U = span(X) be the n-dimensional space spanned by the columns of X and V = U[⊥] the p − n dimensional space orthogonal complement of U, i.e. i.e. the non-trivial null space of X
- Then $\mathbf{X}\mathbf{v} = \mathbf{0}_p$ for all $\mathbf{v} \in V$, and $\mathbf{X}^{\mathsf{T}}\mathbf{X}\mathbf{v} = \mathbf{X}^{\mathsf{T}}\mathbf{0}_p = \mathbf{0}_n$, the solution of the normal equations is

$$\hat{\boldsymbol{\beta}}_{p \times 1} = (\mathbf{X}^{\mathsf{T}} \mathbf{X})^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{y} + \mathbf{v} \quad \forall \ \mathbf{v} \in V$$

where **A**⁻ denotes the Moore-Penrose inverse of **A**

Regularization

Least squares:

$$\min_{\boldsymbol{\beta} \in \mathbb{R}^p} \|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|^2$$

• **Penalized** form

$$\min_{\boldsymbol{\beta} \in \mathbb{R}^p} \|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|^2 + P(\boldsymbol{\beta})$$

where $P(\cdot)$ is some (typically convex) penalty function

• Constrained form

$$\min_{\boldsymbol{\beta} \in \mathbb{R}^p} \|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|^2 \quad \text{subject to } \boldsymbol{\beta} \in C$$

where C is some (typically convex) set

Penalized form

Ridge regression

$$\min_{oldsymbol{\mathcal{B}} \in \mathbb{R}^p} \|\mathbf{y} - \mathbf{X}oldsymbol{\mathcal{B}}\|^2 + \lambda \|oldsymbol{\mathcal{B}}\|$$

Lasso regression

$$\min_{oldsymbol{eta} \in \mathbb{R}^{
ho}} \|\mathbf{y} - \mathbf{X} oldsymbol{eta}\|^2 + \lambda \|oldsymbol{eta}\|_{oldsymbol{\ell}_1}$$

with $\lambda \ge 0$ the tuning parameter (usually chosen by CV) and

$$\|oldsymbol{eta}\|_{oldsymbol{\ell}_1} = \sum_{j=1}^p |eta_j| \qquad \|oldsymbol{eta}\| = \sqrt{\sum_{j=1}^p eta_j^2}$$

are the ℓ_1 and ℓ_2 norms

Constrained form

• Ridge regression

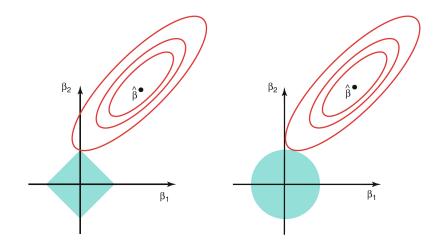
$$\min_{\boldsymbol{\beta} \in \mathbb{R}^p} \|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|^2 \text{ subject to } \|\boldsymbol{\beta}\| \le t$$

Lasso regression

$$\min_{\boldsymbol{\beta} \in \mathbb{R}^p} \|\mathbf{y} - \mathbf{X}\boldsymbol{\beta}\|^2 \text{ subject to } \|\boldsymbol{\beta}\|_{\ell_1} \leq t$$

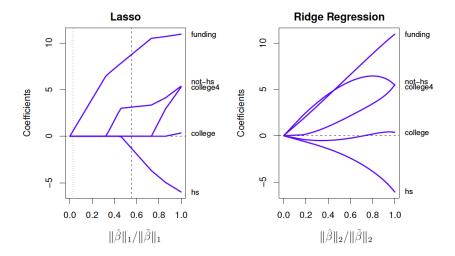
with $t \ge 0$ the tuning parameter

Penalized and constrained problems are equivalent: for any $t \geq 0$ and solution $\hat{\boldsymbol{\beta}}$ of the constrained problem, there is a $\lambda \geq 0$ such that $\hat{\boldsymbol{\beta}}$ also solves the penalized problem, and vice versa



Lasso Ridge

Image from Hastie, Tibshirani and Friedman (2009)



Lasso $\hat{\boldsymbol{\beta}} = (8, 4, 0, 0, -1)^{\mathsf{T}}$ is **sparse**: many elements are 0

Regularized regression: summary

- **High-dimensional data**: infinitely many solutions for $\hat{m{\beta}}$
- Modified least squares: add penalty or constraint
- L2/L1 norm: ridge/lasso
- Lasso: sparse estimates

