
Discover a particle for fun

and profit

Mario Pelliccioni

INFN School of Statistics – Paestum 2019

Welcome!

A 4.5 hours class

Covering a few most relevant use-cases for statistical

analysis in HEP

✓ Using RooFit and RooStats as main tools

You can use your laptops for the exercises (provided you

installed ROOT with the --enable-roofit option)

CERN/other labs central clusters normally work too

Exercises will be in PyROOT, so python installation

necessary

I will flash a few introductory slides for each topic

Disclaimer

The point of this class is to introduce you to some libraries that

let you use different statistical tools

I will try to introduce as many different approaches as I can

These are not the best (or most appropriate) ways to approach

any statistical problem

It’s your responsibility to find (or build) the best tool to do your

job!

RooFit and RooStats

RooFit: a ROOT library containing classes that allow to perform multi-

dimensional (un)binned maximum likelihood/chi2 fits, toy-MC generation,

plotting, etc

RooStats: a ROOT library that uses RooFit and provides classes to perform

statistical interpretation of your results

Documentation

For most of what I do, I refer to the ROOT reference guide:

https://root.cern.ch/doc/master/classes.html

This includes RooFit and RooStats reference

RooFit manual (a bit outdated):

https://root.cern.ch/download/doc/RooFit_Users_Manual_2.91-33.pdf

RooStats documentation

https://twiki.cern.ch/twiki/bin/view/RooStats/WebHome

More RooFit/RooStats examples

https://github.com/pellicci/UserCode/tree/master/RooFitStat_class (C++ based)

https://github.com/pellicci/UserCode/tree/master/RooFitStat_class_python

https://root.cern.ch/download/doc/RooFit_Users_Manual_2.91-33.pdf
https://twiki.cern.ch/twiki/bin/view/RooStats/WebHome
https://github.com/pellicci/UserCode/tree/master/RooFitStat_class
https://github.com/pellicci/UserCode/tree/master/RooFitStat_class_python

Why do we need RooFit?

The origins

“Dictionary”

RooFit uses MINUIT for most of its work, it just provides an easy to use interface and optimizations

Design philosophy

Variables

All variables (observables or parameters) are defined as RooRealVar

Several constructors available, depending on the needs:

var1 = ROOT.RooRealVar(“var1”,”My first var”,4.15) //constant variable

var2 = ROOT.RooRealVar(“var2””My second var”,1.,10.); //range, no initial value

var3 = ROOT.RooRealVar(“var3””My third var”,3.,1.,10.); //valid range, initial value

You can also specify the unit (mostly for plotting purposes)

time = ROOT.RooRealVar(“time”,”Decay time”,0.,100.,”[ps]”);

You can change the properties of your RooRealVar later (setRange, setBins, etc.)

If you want to be 100% sure a variable will stay constant, use RooConstVar

Probability Density Functions

Each PDF in RooFit must inherit from RooAbsPdf

RooAbsPdf provides methods for numerical integration, events generation (hit &

miss), fitting methods, etc.

RooFit provides a very extensive list of predefined functions (RooGaussian,

RooPolynomial, RooCBShape, RooExponential, etc…)

If possible, always use a predefined function (if analytical integration or inversion

method for generation are available, it will speed your computation)

You can always define a custom function using RooGenericPdf

Data Handling

Two basic classes to handle data in RooFit:

• RooDataSet: an unbinned dataset (think of it as a TTree). An ntuple of

data

• RooDataHist: a binned dataset (think of it as a THXF)

Both types of data handlers can have multiple dimensions, contain discrete

variables, weights, etc.

The perfect container

In order to “move” information among different RooFit/RooStats

programs, one can use the RooWorkspace class

A RooWorkspace can contain:

- Variables

- PDFs

- DataSets

A RooWorkspace can be saved into a ROOT file

We’ll see how to use it

The problem at hand
We will be analyzing a sample from the 2010 CMS data taking

All CMS data from Run1 is public → opendata.cern.ch

● Events with two opposite sign muons

● Calculated the invariant mass of the system

● Saved it into a RooDataSet (a 1D ntuple containing “mass” variable)

First, let’s look at the first

three weeks of data taking

(corresponds to about half a

pb-1 of integrated lumi)

We’ll be studying this

distribution

Exercise #0

The first exercise involves RooFit only

● Construct a J/𝛙 and 𝛙(2S) + background PDF

○ J/𝛙 with a Crystal Ball function

○ 𝛙(2S) with a similar (spoiler!) Crystal Ball

○ Background with a polynomial

● For now, the 𝛙(2S) will involve a very small amount of

signal events

● Fit it, plot it, save it

We are going to use this program all the way through the

exercises

Parameter of interest

A parameter of interest is a variable that you want to know to the best

precision and accuracy possible. It depends on the problem

Number of 𝛙(2S) could be considered the POI of the problem

In reality, we’d probably be more interested in cross section of 𝛙(2S)

production → real connection with theory

How do we express our problem in this way?

We’ll assume:

75% total efficiency

A luminosity of 0.64 pb-1

Both efficiency and luminosity uncertainties are negligible

Result of exercise #0

Dimuon efficiency

From CMS-BPH-14-001

RooFit provides handy tools to test the robustness of your
modelization via toy-MC generation tools

This is usually a healthy test to perform, especially on the POI of
your model

We’ll do this in exercise 1

The approach:
- Treat result of fit #0 as «true» model
- Generate 1k experiments, each with same statistics as CMS,

using «true» model
- Refit the 1000 experiments with the same model
- Compare with the «true» value of the parameters

RooFit allows to do this pretty easily

Exercise #1: test the fit with toy-MCs

RooStats

Set of libraries for statistical interpretation of your results

→ communicates with RooFit via RooWorkspace

RooStats does essentially two things:

Interval calculation Hypothesis testing

To do this, it uses “calculators”

RooStats design

C++ classes that reproduce statistical concepts

Main RooStats Calculators

Exercise #2

Exercise #0 told us that there’s clearly no significant peak in

the distribution

Is this actually clear? How do we quantify?

Exercise #3

From exercise #1 we know that our excess is “not significant”.

The normal procedure here is to evaluate an upper limit on our

parameter of interest.

For the frequentist method, we will use CLs...

Understanding CLs

Result of exercise #3

Exercise #4

Let’s now go to a scenario where we have a significant excess

● Get the full 2010 statistics file

● Rerun exercise 0 and 1 to recreate the workspace and

calculate the new significance

Now we can measure the properties of our discovery

Result of exercise #4

𝛙(2S) cross section

From CMS-BPH-14-001

Remember that

BR(ᴪ(2S)→μμ) ~ 8*10
-3

Exercise #5

Let’s see how to incorporate systematic uncertainties in this workflow

Let’s assume we have a 10% uncertainty on the efficiency

One possible way is to reparametrize the efficiency as

Scale factor k==1 for no uncertainty

Assuming a Gaussian behavior for this uncertainty, one can add this

term to the total PDF

𝜎𝑒𝑓𝑓 = 𝑘 ∗ 𝜎

That’s all folks!

