

Discover a particle for fun and profit

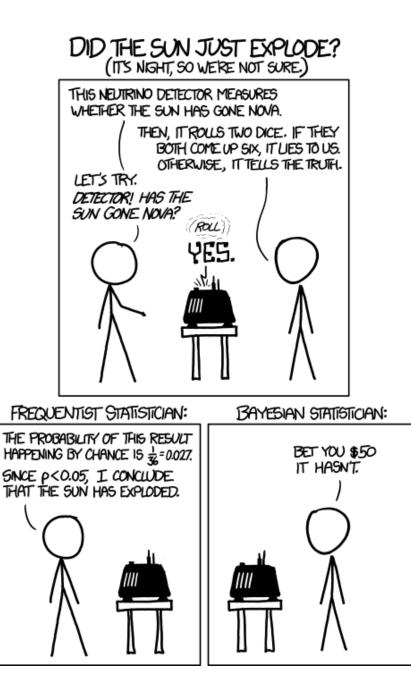
Mario Pelliccioni

INFN School of Statistics – Paestum 2019

Welcome!

A 4.5 hours class

- Covering a few most relevant use-cases for statistical analysis in HEP
 - ✓ Using <u>RooFit</u> and <u>RooStats</u> as main tools
- You can use your laptops for the exercises (provided you installed ROOT with the --enable-roofit option)
- CERN/other labs central clusters normally work too
- Exercises will be in PyROOT, so python installation necessary
- I will flash a few introductory slides for each topic



Disclaimer

The point of this class is to introduce you to some libraries that let you use different statistical tools

I will try to introduce as many different approaches as I can

These are not the best (or most appropriate) ways to approach **any** statistical problem

It's your responsibility to find (or build) the best tool to do your job!

RooFit and RooStats

RooFit: a ROOT library containing classes that allow to perform multidimensional (un)binned maximum likelihood/chi2 fits, toy-MC generation, plotting, etc

RooStats: a ROOT library that uses RooFit and provides classes to perform statistical interpretation of your results

Documentation

For most of what I do, I refer to the ROOT reference guide: https://root.cern.ch/doc/master/classes.html

This includes RooFit and RooStats reference

RooFit manual (a bit outdated): https://root.cern.ch/download/doc/RooFit_Users_Manual_2.91-33.pdf

RooStats documentation

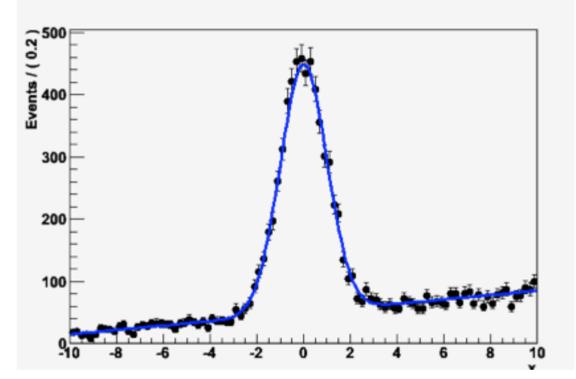
https://twiki.cern.ch/twiki/bin/view/RooStats/WebHome

More RooFit/RooStats examples

<u>https://github.com/pellicci/UserCode/tree/master/RooFitStat_class</u> (C++ based) <u>https://github.com/pellicci/UserCode/tree/master/RooFitStat_class_python</u>

Why do we need RooFit?

- Focus on one practical aspect of many data analysis in HEP: How do you formulate your p.d.f. in ROOT
 - For 'simple' problems (gauss, polynomial) this is easy



 But if you want to do unbinned ML fits, use non-trivial functions, or work with multidimensional functions you quickly find that you need some tools to help you

The origins

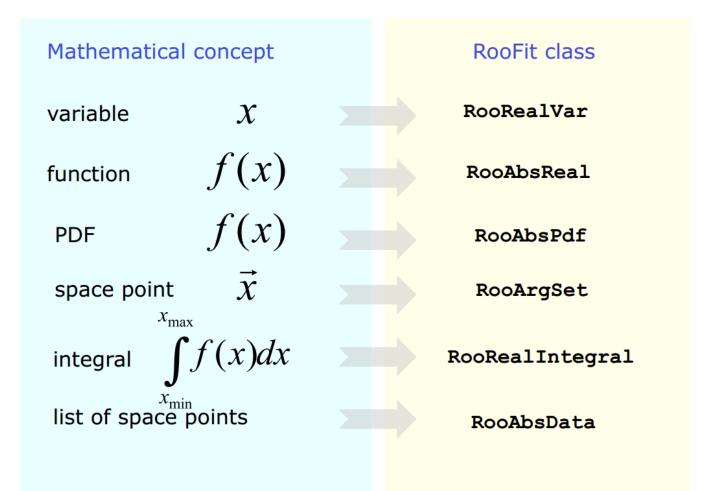
- BaBar experiment at SLAC: Extract sin(2β) from time_ dependent CP violation of B decay: e⁺e⁻ → Y(4s) → BB
 - Reconstruct both Bs, measure decay time difference
 - Physics of interest is in decay time dependent oscillation

$$f_{sig} \cdot \left[\text{SigSel}(m; \overline{p}_{sig}) \cdot \left(\text{SigDecay}(t; q_{sig}, \sin(2\beta)) \otimes \text{SigResol}(t \mid dt; r_{sig}) \right) \right] + (1 - f_{sig}) \left[\text{BkgSel}(m; \overline{p}_{bkg}) \cdot \left(\text{BkgDecay}(t; q_{bkg}) \otimes \text{BkgResol}(t \mid dt; r_{bkg}) \right) \right]$$

- Many issues arise
 - Standard ROOT function framework clearly insufficient to handle such complicated functions → must develop new framework
 - Normalization of p.d.f. not always trivial to calculate → may need numeric integration techniques
 - Unbinned fit, >2 dimensions, many events → computation performance important → must try optimize code for acceptable performance
 - Simultaneous fit to control samples to account for detector performance

"Dictionary"

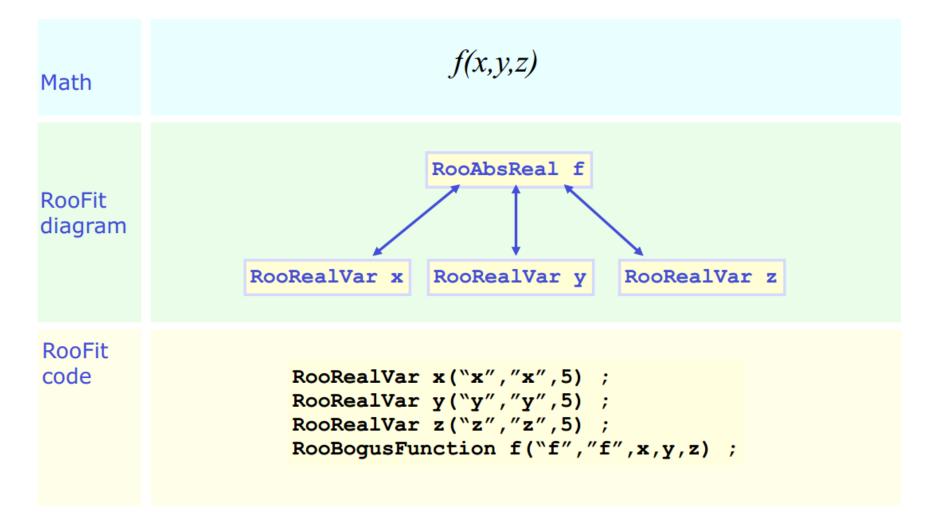
• Mathematical objects are represented as C++ objects



RooFit uses MINUIT for most of its work, it just provides an easy to use interface and optimizations

Design philosophy

 Represent relations between variables and functions as client/server links between objects



Variables

All variables (observables or parameters) are defined as RooRealVar

Several constructors available, depending on the needs:

var1 = ROOT.RooRealVar("var1","My first var",4.15) //constant variable var2 = ROOT.RooRealVar("var2""My second var",1.,10.); //range, no initial value var3 = ROOT.RooRealVar("var3""My third var",3.,1.,10.); //valid range, initial value

You can also specify the unit (mostly for plotting purposes) time = ROOT.RooRealVar("time","Decay time",0.,100.,"[ps]");

You can change the properties of your RooRealVar later (setRange, setBins, etc.) If you want to be 100% sure a variable will stay constant, use RooConstVar

Probability Density Functions

Each PDF in RooFit must inherit from RooAbsPdf

RooAbsPdf provides methods for numerical integration, events generation (hit & miss), fitting methods, etc.

RooFit provides a very extensive list of predefined functions (RooGaussian, RooPolynomial, RooCBShape, RooExponential, etc...)

If possible, always use a predefined function (if analytical integration or inversion method for generation are available, it will speed your computation)

You can always define a custom function using RooGenericPdf

Data Handling

Two basic classes to handle data in RooFit:

- RooDataSet: an unbinned dataset (think of it as a TTree). An ntuple of data
- **RooDataHist**: a binned dataset (think of it as a THXF)

Both types of data handlers can have multiple dimensions, contain discrete variables, weights, etc.

The perfect container

In order to "move" information among different RooFit/RooStats programs, one can use the RooWorkspace class

A **RooWorkspace** can contain:

- Variables
- PDFs
- DataSets

A RooWorkspace can be saved into a ROOT file

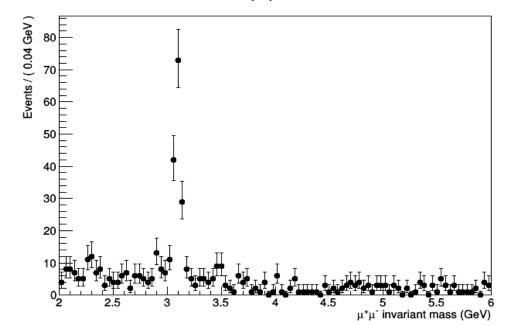
We'll see how to use it

The problem at hand

We will be analyzing a sample from the 2010 CMS data taking

All CMS data from Run1 is <u>public</u> \rightarrow opendata.cern.ch

- Events with two opposite sign muons
- Calculated the invariant mass of the system
- Saved it into a RooDataSet (a 1D ntuple containing "mass" variable)



A RooPlot of "µ+µ- invariant mass"

First, let's look at the first three weeks of data taking (corresponds to about half a pb⁻¹ of integrated lumi)

We'll be studying this distribution

Exercise #0

The first exercise involves RooFit only

- Construct a J/ ψ and ψ (2S) + background PDF
 - J/ψ with a Crystal Ball function
 - \circ ψ (2S) with a similar (spoiler!) Crystal Ball
 - Background with a polynomial
- For now, the $\psi(2S)$ will involve a very small amount of signal events
- Fit it, plot it, save it

We are going to use this program all the way through the exercises

Parameter of interest

A parameter of interest is a variable that you want to know to the best precision and accuracy possible. It depends on the problem

Number of $\psi(2S)$ could be considered the POI of the problem In reality, we'd probably be more interested in cross section of $\psi(2S)$ production \rightarrow real connection with theory

$$\sigma(pp \rightarrow \psi(2S))) * BR(\psi(2S) \rightarrow \mu\mu) = \frac{N_{\psi(2S)}}{\mathcal{L} * \epsilon_{\mu\mu}}$$

How do we express our problem in this way?

We'll assume:

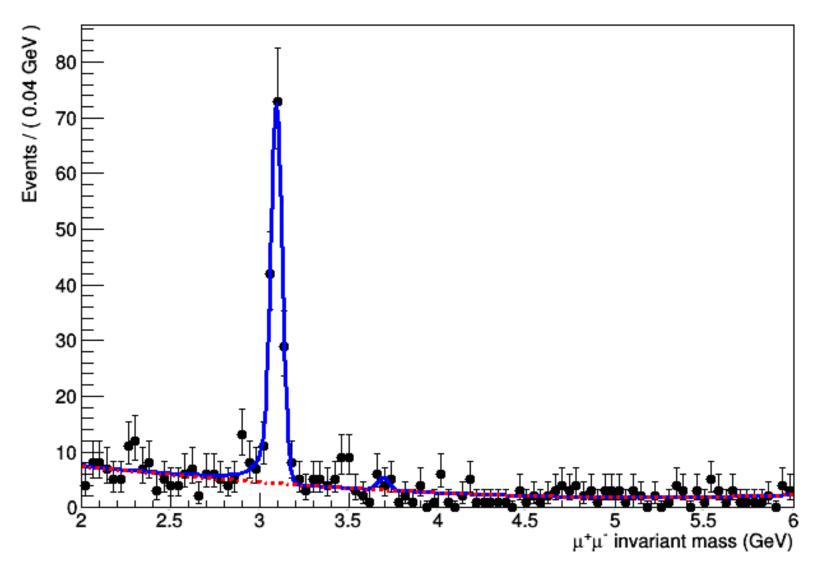
75% total efficiency

A luminosity of 0.64 pb⁻¹

Both efficiency and luminosity uncertainties are negligible

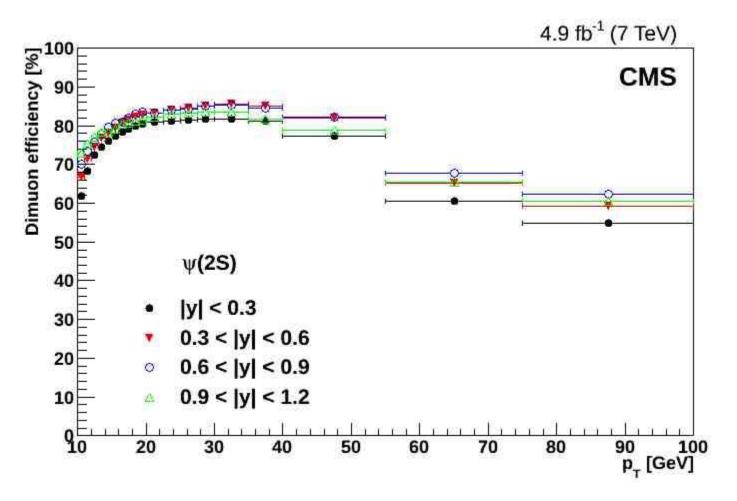
Result of exercise #0

A RooPlot of "µ+µ- invariant mass"



Dimuon efficiency

From CMS-BPH-14-001



Exercise #1: test the fit with toy-MCs

RooFit provides handy tools to test the robustness of your modelization via toy-MC generation tools

This is usually a healthy test to perform, especially on the POI of your model

We'll do this in exercise 1

The approach:

- Treat result of fit #0 as «true» model
- Generate 1k experiments, each with same statistics as CMS, using «true» model
- Refit the 1000 experiments with the same model
- Compare with the «true» value of the parameters

RooFit allows to do this pretty easily

Set of libraries for statistical interpretation of your results \rightarrow communicates with RooFit via RooWorkspace

RooStats does essentially two things:

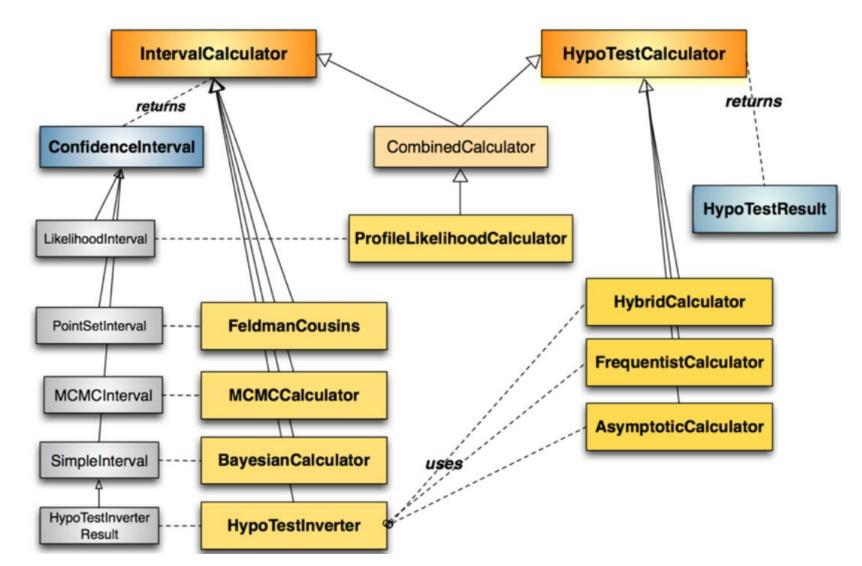
Interval calculation

Hypothesis testing

To do this, it uses "calculators"

RooStats design

C++ classes that reproduce statistical concepts



Main RooStats Calculators

ProfileLikelihood calculator

interval estimation using asymptotic properties of the likelihood function
Bayesian calculators

interval estimation using Bayes theorem

BayesianCalculator (analytical or adaptive numerical integration)

MCMCCalculator (Markov-Chain Monte Carlo)

HybridCalculator, FrequentistCalculator

 frequentist hypothesis test calculators using toy data (difference in treatment of nuisance parameters)

AsymptoticCalculator

hypothesis tests using asymptotic properties of likelihood function
HypoTestInverter

- invert hypothesis test results (from Asympototic, Hybrid or FrequentistCalculator) to estimate an interval
- main tools used for limits at LHC (limits using CLs procedure)

NeymanConstruction and FeldmanCousins

frequentist interval calculators

Exercise #0 told us that there's clearly no significant peak in the distribution

Is this actually clear? How do we quantify?

From exercise #1 we know that our excess is "not significant".

The normal procedure here is to evaluate an upper limit on our parameter of interest.

For the frequentist method, we will use CL_s...

Understanding CL_s

- A modified approach was proposed for the first time when combining the limits on the Higgs boson search from the four LEP experiments, ALEPH, DELPHI, L3 and OPAL
- Given a test statistic $\lambda(x)$, determine its distribution for the two hypotheses $H_1(s+b)$ and $H_0(b)$, and compute:

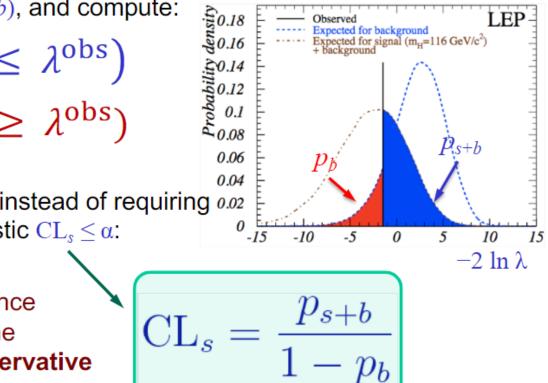
$$p_{s+b} = P(\lambda(x|H_1) \le \lambda^{\text{obs}})$$
$$p_b = P(\lambda(x|H_0) \ge \lambda^{\text{obs}})$$

• The upper limit is computed, instead of requiring
$$0.03$$

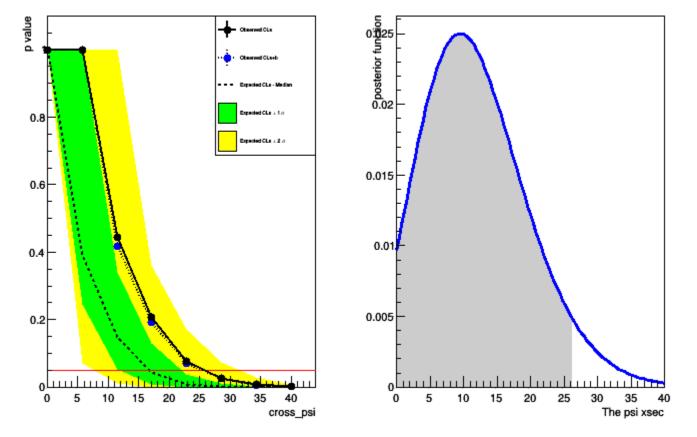
 $p_{s+b} \leq \alpha$, on the modified statistic $CL_s \leq \alpha$:

 Since 1−p_b ≤ 1, CL_s ≥ p_{s+b}, hence upper limits computed with the CL_s method are always conservative

Note:
$$\lambda \leq \lambda^{obs}$$
 implies $-2\ln\lambda \geq \lambda^{obs}$



Result of exercise #3



Frequentist scan result for psl xsec

Posterior probability of parameter "cross_psi"

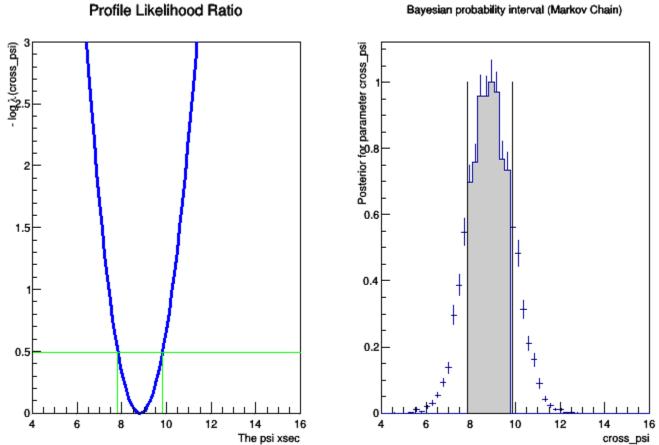
Exercise #4

Let's now go to a scenario where we have a significant excess

- Get the full 2010 statistics file
- Rerun exercise 0 and 1 to recreate the workspace and calculate the new significance

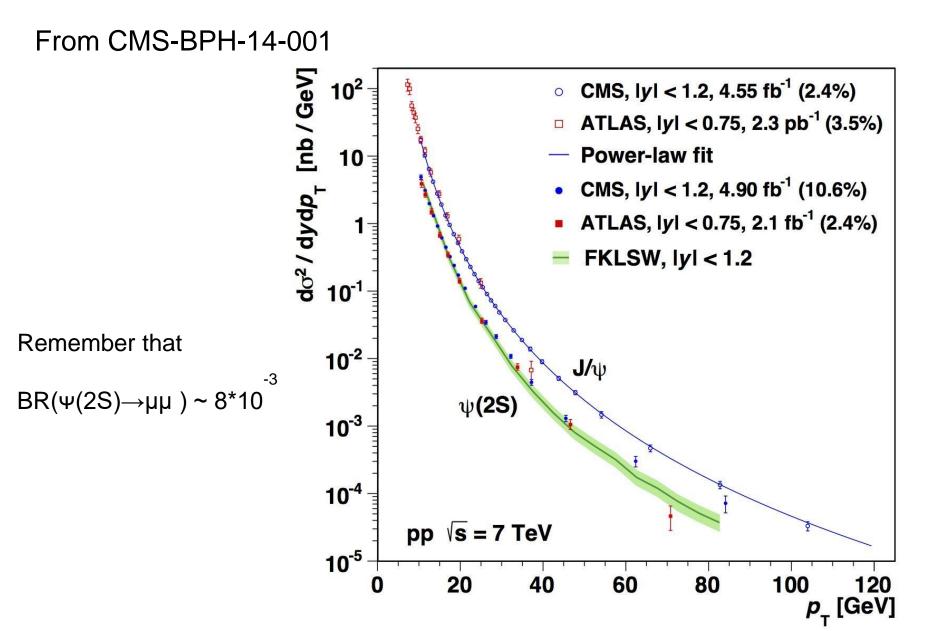
Now we can measure the properties of our discovery

Result of exercise #4



Bayesian probability interval (Markov Chain)

$\psi(2S)$ cross section



Exercise #5

Let's see how to incorporate systematic uncertainties in this workflow

Let's assume we have a 10% uncertainty on the efficiency One possible way is to reparametrize the efficiency as

$$\sigma_{eff} = k * \sigma$$

Scale factor k==1 for no uncertainty

Assuming a Gaussian behavior for this uncertainty, one can add this term to the total PDF

That's all folks!