UNIVERSITÉ DE GENĖVE

FACULTÉ DES SCIENCES

Status of nu-mu nu-e combined analysis

F.Sanchez

DPNC/Univ. de Genève

T2K experimental strategy

Search for CPV by comparing $v_{\mu} \rightarrow v_{e}$ and $\bar{\nu}_{\mu} \longrightarrow \bar{\nu}_{e}$.

Samples: Near and Far

- Off-axis near detector samples divided by visible pion content, beam focusing

Reconstructed muon momentum (and angle) for both CH target and $\mathrm{CH}+\mathrm{H}_{2} \mathrm{O}$ targets, separately.

Oscillation @ T2K

Appearance

$$
\begin{aligned}
& P\left(v_{\mu} \rightarrow v_{e}\right)= 4 c_{13}^{2} s_{13}^{2} s_{23}^{2} \sin ^{2} \Delta_{31} \times\left(1 \pm \frac{2 a}{\Delta m_{31}^{2}}\left(1-s_{13}^{2}\right)\right) \\
&+8 c_{13}^{2} s_{12} s_{13} s_{23}\left(c_{12} c_{23} \cos \delta-s_{12} s_{13} s_{23}\right) \cos \Delta_{32} \sin \Delta_{31} \sin \Delta_{21} \\
& \begin{array}{c}
v \text { vs. } \bar{v} \\
\text { sign } \\
\text { change } \quad
\end{array} \quad \mp 8 c_{13}^{2} s_{13}^{2} s_{23}^{2} \cos \Delta_{32} \sin \Delta_{31} \frac{a L}{4 E}\left(1-2 s_{13}^{2}\right) \\
& \mp 8 c_{13}^{2} c_{12} c_{23} s_{12} s_{13} s_{23} \sin \delta \sin \Delta_{32} \sin \Delta_{31} \sin \Delta_{21} \\
&+4 s_{12}^{2} c_{13}^{2}\left(c_{12} c_{23}+s_{12}^{2} s_{13}^{2} s_{23}^{2}-2 c_{12} c_{23} s_{12} s_{13} s_{23} \cos \delta\right) \sin ^{2} \Delta_{21} \\
& c_{i j}=\cos \theta_{i j}, s_{i j}=\sin \theta_{i j} \quad \Delta_{i j}=\Delta m_{i j}^{2} \frac{L}{4 E_{v}} \quad a=2 \sqrt{2} G_{F} n_{e} E
\end{aligned}
$$

Leading term
CP Conserving
Matter effect
CP Violating
Solar term

θ_{13} dependency Octant dependency CP-odd phase

Disappearance

$P\left(v_{\mu} \rightarrow v_{\mu}\right) \approx 1-\left(\cos ^{4} \theta_{13} \cdot \sin ^{2} 2 \theta_{23}+\sin ^{2} 2 \theta_{13} \cdot \sin ^{2} \theta_{23}\right) \cdot \sin ^{2} \frac{\Delta m_{32}^{2} \cdot L}{4 E_{v}}$

Samples:
 Far

- Select events with no pions
- (\& $v_{e} 1 \pi^{+}$sample).
- E_{v} from lepton: $\quad E_{\nu}^{Q E}=\frac{m_{p}^{2}-m_{n}^{\prime 2}-m_{\mu}^{2}+2 m^{\prime}{ }_{n} E_{\mu}}{2\left(m_{n}^{\prime}-E_{\mu}+p_{\mu} \cos \theta_{\mu}\right)}$

The Far samples

THE FIVE SAMPLES

> Using the reconstructed fiTQun quantities, five samples are selected:

(CCQE) 1 Electron-like Ring, 0 decay electrons
(CC1r) 1 Electron-like Ring, 1 decay electron

$$
v_{e}\left(\bar{v}_{e}\right)+N \rightarrow e\left(e^{+}\right)+X
$$

Antineutrino Mode (reverse horn current RHC):

$$
\begin{gathered}
v_{e}+N \rightarrow e+\pi^{+}+X \quad \text { NEW! } \\
\downarrow{ }^{+}+v_{\mu} \\
\downarrow \\
e^{+}+v_{e}+\bar{v}_{\mu}
\end{gathered}
$$

(CCQE) 1 Muon-like Ring, ≤ 1 decay electron
(CCQE) 1 Electron-like Ring, 0 decay electrons
No antineutrino mode CC1 π sample due to π
$\bigcirc=$ detected particles absorption

New reconstruction algorithm FITQUN RECONSTRUCTION ALGORITHM

> Previous T2K analyses have used the event reconstruction algorithm APFit
> For this result, event reconstruction at Super-K updated to use the fiTQun algorithm
> fiTQun uses a charge and time likelihood for a given ring(s) hypotheses
> Maximizes likelihood for each event
> Complete charge and time information in the likelihood leads to improved event reconstruction
> fiTQun previously used in T2K analyses for the rejection of Π^{0} from electron neutrino candidates

Schematic of Osc. Analysis

Beam!

Strategy is to get $50 \% / 50 \%$ FHC and RHC

SAMPLE	PREDICTED				OBSERVED
	$\delta_{\mathrm{CP}}=-\pi / 2$	$\delta_{\text {CP }}=0$	$\delta_{\text {CP }}=+\pi / 2$	$\delta_{\mathrm{CP}}=\pi$	
FHC μ CCQE	268.5	268.2	268.5	268.9	243
RHC μ CCQE	95.5	95.3	95.5	95.8	102
FHCe CCQE	73.8	61.6	50.0	62.2	75
FHC e CC1 π^{+}	6.9	6.0	4.9	5.8	15
RHC e CCQE	11.8	13.4	14.9	13.2	9

Analyses

Frequentist with likelihood fit to
$E_{\text {rec }} / \theta_{\text {lep }}$ for V_{e} / V_{e}
$E_{\text {rec }}$ for v_{μ} / v_{μ}

Frequentist with likelihood fit to

$$
\begin{aligned}
& \text { plep } / \theta_{\text {lep }} \text { for } v_{e} / v_{e} \\
& E_{\text {rec }} \text { for } v_{\mu} / v_{\mu}
\end{aligned}
$$

Bayesian with Markov Chain MC Erec for all samples simultaneous fit with near detector

Oscillation results

- World best measurement of $\sin ^{2}\left(\theta_{23}\right) \rightarrow$ compatible with maximal mixing

	NH	IH
$\sin ^{2} \theta_{23}$	$0.536_{-0.046}^{+0.031}$	$0.536_{-0.041}^{+0.031}$
$I \Delta \mathrm{~m}^{2} \mid$	2.434 ± 0.064	$2.410_{-0.063}^{+0.062}$

From Claudio

Oscillation results

- Precise measurement of $\sin ^{2}\left(\theta_{23}\right) \rightarrow$ compatible with maximal mixing
- T2K alone and T2K+reactor both prefer values of $\delta_{C P} \sim-\pi / 2$
- Normal ordering is also favoured

	$\sin ^{2} \theta_{23}<0.5$	$\sin ^{2} \theta_{23}>0.5$	SUM
NO $\left(\Delta \mathrm{m}^{2}{ }_{32}>0\right)$	$20,4 \%$	$68,4 \%$	$88,8 \%$
$10\left(\Delta \mathrm{~m}^{2}{ }_{31}<0\right)$	$2,3 \%$	$8,9 \%$	$11,2 \%$
SUM	$22,7 \%$	$77,3 \%$	100%

SK upgrade

- Additional SK data samples under study
- $\mathrm{CCl} \pi^{+}, \mathrm{NC} \pi^{0}$ in both FHC, RHC
, SK-Gd project
- enhance neutron detection
= improve low-energy \bar{v}_{e} detection
- may provide wrong-sign background constraint in \bar{v}_{e} -mode data.
* Repairs to SK tank finished, filling with water and ready in Jan 2019.
* Load $\mathrm{Gd}_{2}\left(\mathrm{SO}_{4}\right)_{3}$ in stages up to 0.2%.

$\Delta T-30 \mu \mathrm{~s}$, Vertices within 50 cm

The Gd might help us to improve the far detector samples via the detection of neutrons in the final state: neutrino vs. antineutrino

Conclusions \& next steps

- T2K has moved from simple oscillation fits to a full data fit during the Jennifer period.
- This is the first time this combined analysis is done offering many advantages:
- Consistent treatment of errors and correlations.
- $3 v$ oscillation fits.
- Next steps:
- Improve the samples at ND using more final states and better detector acceptance.
- Improve ND with the ND280 upgrade program.
- Improve on final state events samples.
- Larger statistics will also open new possibilities at the Far detector with more bins, 2D fits, etc...

