

Status of nu-mu nu-e combined analysis

F.Sanchez DPNC/Univ. de Genève

T2K experimental strategy

Search for CPV by comparing $\nu_{\mu} \rightarrow \nu_{e}$ and $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$.

Samples: Near and Far

 Off-axis near detector samples divided by visible pion content, beam focusing

Reconstructed muon momentum (and angle) for both CH target and CH+H₂O targets, separately.

 $\bar{\nu}$ 1 track

 $\bar{\nu} > 1$ track

Oscillation @ T2K

Appearance

$$P(\nu_{\mu} \rightarrow \nu_{e}) = 4c_{13}^{2} \underline{s_{13}^{2}} \underline{s_{23}^{2}} \sin^{2} \Delta_{31} \times \left(1 \pm \frac{2 a}{\Delta m_{31}^{2}} (1 - s_{13}^{2})\right)$$

Leading term

CP Conserving

Matter effect

CP Violating

Solar term

$$\mp 8c_{13}^2s_{13}^2s_{23}^2\cos\Delta_{32}\sin\Delta_{31}\frac{aL}{4E}(1-2s_{13}^2)$$

$$\mp 8c_{13}^{2}c_{12}c_{23}s_{12}s_{13}s_{23}\underline{\sin\delta}\underline{\sin\Delta}_{31}\underline{\sin\Delta}_{31}\underline{\sin\Delta}_{21} + 4s_{12}^{2}c_{13}^{2}(c_{12}c_{23} + s_{12}^{2}s_{13}^{2}s_{23}^{2} - 2c_{12}c_{23}s_{12}s_{13}s_{23}\cos\delta)\underline{\sin^{2}\Delta}_{21}$$

 $+8c_{13}^2s_{12}s_{13}s_{23}(c_{12}c_{23}\cos\delta-s_{12}s_{13}s_{23})\cos\Delta_{32}\sin\Delta_{31}\sin\Delta_{21}$

$$c_{ij} = \cos \theta_{ij}$$
 , $s_{ij} = \sin \theta_{ij}$ $\Delta_{ij} = \Delta m_{ij}^2 \frac{L}{4E_{ij}}$ $a = 2\sqrt{2} G_F n_e E$

θ₁₃ dependency

Octant dependency

CP-odd phase

Disappearance

$$P(\nu_{\mu} \rightarrow \nu_{\mu}) \approx 1 - \left(\cos^4 \theta_{13} \cdot \sin^2 2\theta_{23} + \sin^2 2\theta_{13} \cdot \sin^2 \theta_{23}\right) \cdot \sin^2 \frac{\Delta m_{32}^2 \cdot L}{4 E_{\nu}}$$

Samples: Near and Far

Select events with no pions

Events

- (& $\nu_e 1\pi^+$ sample).
- E_{ν} from lepton:

$$E_{\nu}^{QE} = \frac{m_p^2 - {m'}_n^2 - m_{\mu}^2 + 2{m'}_n E_{\mu}}{2(m'_n - E_{\mu} + p_{\mu} \cos \theta_{\mu})}$$

Number of Events

The Far samples

THE FIVE SAMPLES

➤ Using the reconstructed fiTQun quantities, five samples are selected:

Neutrino Mode (forward horn current FHC):

(CCQE) 1 Muon-like Ring, ≤1 decay electron

(CCQE) 1 Electron-like Ring, 0 decay electrons.

(CC1π) 1 Electron-like Ring, 1 decay electron

$$v_{\mu}(\bar{\mathbf{v}}_{\mu}) + N \rightarrow \mu^{-}(\mu^{+}) + X$$

$$e^{-}(e^{+}) + \bar{\mathbf{v}}_{e}(\mathbf{v}_{e}) + v_{\mu}(\bar{\mathbf{v}}_{\mu})$$

$$v_e(\bar{v}_e) + N \rightarrow e^-(e^+) + X$$

$$v_e + N \rightarrow e^+ + \pi^+ + X$$

$$\downarrow^{\mu^+} + v_{\mu}$$

$$\stackrel{\downarrow}{e^{+}} + \nu_{e} + \overline{\nu}_{\mu}$$

Antineutrino Mode (reverse horn current RHC):

(CCQE) 1 Muon-like Ring, ≤1 decay electron

(CCQE) 1 Electron-like Ring, 0 decay electrons

No antineutrino mode CC1 π sample due to π absorption

New reconstruction algorithm

FITQUN RECONSTRUCTION ALGORITHM

- ➤ Previous T2K analyses have used the event reconstruction algorithm APFit
- ➤ For this result, event reconstruction at Super-K updated to use the fiTQun algorithm
- ➤ fiTQun uses a charge and time likelihood for a given ring(s) hypotheses
 - Maximizes likelihood for each event
 - Complete charge and time information in the likelihood leads to improved event reconstruction
- fiTQun previously used in T2K analyses for the rejection of π⁰ from electron neutrino candidates

Schematic of Osc. Analysis

Beam!

23 Jan. 2010 – 31 May 2018

POT total: 3.16×10^{21}

ν-mode 1.51 x 10²¹ (47.83%)

 $\bar{\nu}$ -mode 1.65 x 10²¹ (52.17%)

Events

CAMPLE		PRED	ICTED		OPSERVED
SAMPLE	$\delta_{\text{CP}} = -\pi/2$	$\delta_{ extsf{CP}} = 0$	$\delta_{\text{CP}} = +\pi/2$	$\delta_{ extsf{CP}}{=}\pi$	OBSERVED
FHC μ CCQE	268.5	268.2	268.5	268.9	243
RHC μ CCQE	95.5	95.3	95.5	95.8	102
FHC e CCQE	73.8	61.6	50.0	62.2	75
FHC e CC1 π^+	6.9	6.0	4.9	5.8	15
RHC e CCQE	11.8	13.4	14.9	13.2	9

Analyses

Frequentist with likelihood fit to E_{rec}/θ_{lep} for v_e/v_e E_{rec} for v_μ/v_μ

Frequentist with likelihood fit to $p_{lep}/\theta_{lep} \ for \ v_e/\ v_e$ $E_{rec} \ for \ v_\mu/\ v_\mu$

Bayesian with Markov Chain MC

E_{rec} for all samples
simultaneous fit with near detector

Oscillation results

 World best measurement of sin²(θ₂₃) → compatible with maximal mixing

	NH	H
sin²θ ₂₃	$0.536^{+0.031}_{-0.046}$	$0.536^{+0.031}_{-0.041}$
l∆m²l	2.434 ± 0.064	$2.410^{+0.062}_{-0.063}$

Oscillation results

- Precise measurement of sin²(θ₂₃)→ compatible with maximal mixing
- * T2K alone and T2K+reactor both prefer values of δ_{CP}~-π/2
- Normal ordering is also favoured

	sin²θ ₂₃ <0.5	sin²θ _{23>} 0.5	SUM
NO (Δm ² ₃₂ >0)	20,4%	68,4 %	88,8 %
IO (Δm ² 31<0)	2,3 %	8,9 %	11,2%
SUM	22,7 %	77,3 %	100 %

SK upgrade

- Additional SK data samples under study
 - \bullet CC1 π^+ , NC π^0 in both FHC, RHC
- SK-Gd project
 - enhance neutron detection
 - improve low-energy ν_e detection
 - may provide wrong-sign background constraint in v_e
 -mode data.
- Repairs to SK tank finished, filling with water and ready in Jan 2019.
- Load $Gd_{2}(SO_{4})_{3}$ in stages up to 0.2%.

The Gd might help us to improve the far detector samples via the detection of neutrons in the final state: neutrino vs. antineutrino

Conclusions & next steps

- T2K has moved from simple oscillation fits to a full data fit during the Jennifer period.
- This is the first time this combined analysis is done offering many advantages:
 - Consistent treatment of errors and correlations.
 - 3v oscillation fits.
- Next steps:
 - Improve the samples at ND using more final states and better detector acceptance.
 - Improve ND with the ND280 upgrade program.
 - Improve on final state events samples.
 - Larger statistics will also open new possibilities at the Far detector with more bins, 2D fits, etc...