Status of CDC

Shoji Uno (KEK)

JENNIFER general meeting 2018.10.30

Paris

Belle-II CDC

Belle II CDC vs. Belle CDC

- Larger outer radius thanks to a compact BPID
- Larger inner radius to make SVD space more and to avoid high radiation region
- Conical endplates were machined to meet final focusing magnets.
- A small cell chamber was installed as same as the Belle CDC.
- New compact electronics is located near backward end plate.
- 3D charged trigger scheme is adapted.

Wire Configuration

Superlayer Type and No.	No. of layers	Signal cells Per layer	Radius (mm)	Stereo angle (mrad)
Axial 1	8	160	168.0 - 238.0	0.
Stereo U2	6	160	257.0 - 348.0	68.1 – 69.3
Axial 3	6	192	365.2 – 455.7	0.
Stereo V4	6	224	476.9 – 566.9	-55.3 – -64.3
Axial 5	6	256	584.1 – 674.1	0.
Stereo U6	6	288	695.3 – 785.3	63.1 - 70.0
Axial 7	6	320	802.5 - 892.5	0.
Stereo V8	6	352	913.7 – 1003.7	-68.5 – -74.0
Axial 9	6	384	1020.0 – 1111.4	0.

First collision Events

CDC is basically working.

Bhabha event

BB like event

Calibration and Alignment

- Calibration was done.
 - T0, time walk, Propagation velocity
 - xt function (56 layers, 7 θ bins, 18 α bins, left-right),
 - Position resolution

- Alignment was done.
 - Using cosmic raywithout magnetic field.

d₀ and z₀ resolutions

P_t resolution

$$\frac{\sigma_{P_{t}}}{P_{t}} = \left(\frac{\sigma_{P_{t}}}{P_{t}}\right)_{\text{meas}} \oplus \left(\frac{\sigma_{P_{t}}}{P_{t}}\right)_{\text{MS}}$$

$$\left(\frac{\sigma_{P_t}}{P_t}\right)_{\text{meas}} = \frac{P_t \sigma_{r\phi}}{0.3 L^2 B} \sqrt{\frac{720}{N+4}}$$

$$\left(\frac{\sigma_{P_{t}}}{P_{t}}\right)_{MS} = \frac{0.05}{L B \beta} \sqrt{1.43 \frac{L}{X_{0}}} \left[1 + 0.038 \ln \frac{L}{X_{0}}\right]$$

 $\sigma_{r\phi}$: position resolution

B: magnetic field (1.5 T).

 X_o : radiation length.

L: lever arm.

N: number of measurement point

$$\frac{\sigma_{Pt}}{Pt} = \sqrt{(aP_t)^2 + b^2}$$

Belle → Belle II

L: $77.5 \rightarrow 94.84 \text{ cm}$

N: $50 \rightarrow 56$

Belle CDC only: $0.28P_t \oplus 0.35$ (%)

=> Estimate for Belle II : $0.19Pt \oplus 0.32(\%)$

Obtained : $0.127P_t \oplus 0.310(\%)$

 P_T (GeV/c)

- P_T resolution is much improved compare with Belle CDC.
- Much better than the expectation (extrapolation from Belle CDC)
- Observed constant term is not improved as expected because of the multiple scattering on the B-field mapper

Mass peaks for charged tracks for Phase 2 data

Phase 2 dE/dx performance

Summary

- CDC is basically working.
 - Reasonable performances were obtained for the momentum and energy loss measurements.
 - Initial calibration and alignment were done.
 - The track parameter is provided to other subdetectors.
- Further calibration and alignment are necessary to obtain the designed performance.

Backup