## WP1 status (Belle II software and physics case)

Christoph Schwanda (HEPHY) JENNIFER Consortium General Meeting Paris, October 30, 2018



## **Objectives of WP1**

Exploit the physics potential of Belle II by

- Task 1.1: Developing the detector-related software (charged track reconstruction, alignment, particle identification, ...)
- Task 1.2: Implementing software tools for physics analysis
- Task 1.3: Identify the key measurements for Belle II (Belle II-theory interface platform)







## Phase 2 pilot run (April to July 2018)



First e<sup>+</sup>e<sup>-</sup> collisions on April 26, 2018



~88 B mesons in 250/pb of phase 2 data

## ~0.5/fb of integrated luminosity





## Beam Background "Big Picture"

- Phase 1:
  - SR: not detected
  - Integrated doses: as expected
  - Touschek: mildly elevated
  - Beam-gas: HER ~100 x MC
  - Neutrons: mildly elevated

#### Phase 2:

- SR: observed in diamonds, PXD, FANGS from both rings.
   <u>New:</u> SR postdicted after removing Geant4 low-energy cut
- Dose: as predicted in diamonds. PXD suggests higher dose.
   <u>New:</u> Radio-chromic foils confirm higher dose (10x diamonds), likely from<sub>Diamond</sub> low-energy particles
- <u>Backgrounds in Belle II: dominated by LER, already</u> problematic for CDC
- <u>New:</u> Touschek, Beam-gas versus run-specific bkg simulations
  - LER: ~10 x MC in SVD
  - HER: ~1000 x MC in SVD
  - When extrapolated to Phase 3, this predicts beam-gas dominates over luminosity BG in SVD.
  - Occupancy and dose too high, even w/o injection background



#### https://doi.org/10.1016/j.nima.2018.05.071



#### Data/MC: Phase 2 SVD L3

|               | June 11,12 | July 16  |
|---------------|------------|----------|
| HER BeamGas   | 270-610    | 230-600  |
| HER Touschek  | 260-350    | 850-1700 |
| LER BeamGas   | 11-13      | 34-39    |
| LER Touschek  | 2.3-2.9    | 3.5-4.6  |
| (H. Tanigawa) |            | 5        |

### CDC background studies

Aiqiang Guo, Carsten Niebuhr.



Study CDC hits using data with LER (HER) beam only. Observe clusters of CDC hits. Current explanation, supported by cluster boundaries (within superlayer, readout board) and timing (hits in-time) that the clusters are triggered by background photons which causes electronic cross-talk.  $\rightarrow$  Tracking may be severely affected by them, to be watched/optimized (reduce gain/increase threshold ?)

#### Sensitivity of the tracking to background

| SVD standalone tracking                               |                                                |                                               |                                                    |                                                                              |  |  |
|-------------------------------------------------------|------------------------------------------------|-----------------------------------------------|----------------------------------------------------|------------------------------------------------------------------------------|--|--|
| bkg scale                                             | efficiency                                     | fake rate                                     | hit efficiency                                     | occupancy L3 U/V                                                             |  |  |
| bkg x 1                                               | 0.961                                          | 0.054                                         | 0.957                                              | 0.013/0.012                                                                  |  |  |
| bkg x 2                                               | 0.946                                          | 0.098                                         | 0.948                                              | 0.023/0.021                                                                  |  |  |
| bkg × 3                                               | 0.935                                          | 0.136                                         | 0.937                                              | 0.032/0.030                                                                  |  |  |
| bkg × 5                                               | 0.907                                          | 0.227                                         | 0.920                                              | 0.052/0.047                                                                  |  |  |
| $bkg \times 10$                                       | 0.819                                          | 0.488                                         | 0.884                                              | 0.102/0.090                                                                  |  |  |
|                                                       |                                                |                                               |                                                    |                                                                              |  |  |
| Full tracking chain                                   |                                                |                                               |                                                    |                                                                              |  |  |
| Full tracking                                         | g chain                                        |                                               |                                                    |                                                                              |  |  |
| bkg scale                                             | g chain<br>efficiency                          | fake rate                                     | hit efficiency                                     | occupancy L3 U/V                                                             |  |  |
| bkg scale<br>bkg x 1                                  | g chain<br>efficiency<br>0.955                 | fake rate<br>0.053                            | hit efficiency<br>0.818                            | occupancy L3 U/V<br>0.013/0.012                                              |  |  |
| bkg scale<br>bkg x 1<br>bkg x 2                       | g chain<br>efficiency<br>0.955<br>0.939        | fake rate<br>0.053<br>0.086                   | hit efficiency<br>0.818<br>0.744                   | occupancy L3 U/V<br>0.013/0.012<br>0.023/0.021                               |  |  |
| bkg scale<br>bkg x 1<br>bkg x 2<br>bkg x 3            | efficiency<br>0.955<br>0.939<br>0.919          | fake rate<br>0.053<br>0.086<br>0.119          | hit efficiency<br>0.818<br>0.744<br>0.635          | occupancy L3 U/V<br>0.013/0.012<br>0.023/0.021<br>0.032/0.030                |  |  |
| bkg scale<br>bkg x 1<br>bkg x 2<br>bkg x 3<br>bkg x 5 | efficiency<br>0.955<br>0.939<br>0.919<br>0.856 | fake rate<br>0.053<br>0.086<br>0.119<br>0.189 | hit efficiency<br>0.818<br>0.744<br>0.635<br>0.422 | occupancy L3 U/V<br>0.013/0.012<br>0.023/0.021<br>0.032/0.030<br>0.052/0.047 |  |  |

 $\rightarrow$  SVD standalone reconstruction seems to be more robust vs full tracking chain for high background situation. SVD-driven tracking could be a backup solution.

**Thomas Lueck** 

#### Tracking efficiency studies: radiative bhabha events



Potentially can be used to map efficiency vs p, shown are result for high pt>3.5 GeV (no background subtraction at the moment). Some charge dependence, overall difference at 1.5% level.

## Software Progress

- Major Release: release-02-00-00
  - Full geometry construction from database
  - Improved modeling of passive material
  - More accurate magnetic field
  - Some trigger information on mdst
  - Improved tracking performance
  - Option to simulate the PXD in gated mode
  - Improved documentation (see software.belle2.org)
  - Many more improvements in simulation, reconstruction, analysis tools
- Two patch releases: release-02-00-01 and release-02-00-02
- Minor release-02-01-00 (coordinated by Francesco Tenchini)
  - Some PID improvements

| 2         | -       | 228 weeks 183 km 11 km 32 km 2 km km                                                                           |
|-----------|---------|----------------------------------------------------------------------------------------------------------------|
| 1-200-1-2 |         |                                                                                                                |
| e . e     | 8-y     | Innersty                                                                                                       |
| 0.0       | 81-181  | R presty certain he dolor                                                                                      |
| 0 0       | 80-00T  | Ren intomation dealered aproxi                                                                                 |
|           | 81,202  | New Mail parameters into Contilions Database                                                                   |
| 0 0       | 01-052  | Review and Add Passive materials and beyong to PRD in placed                                                   |
| 0.0       | 81-309  | Review and Add Passive materials and Services for SVD in phase?                                                |
|           | 81.000  | Review and Add Passive enderids and Devices for all complete 3 detectors                                       |
| 0.0       | 81-307  | Review and -Add Passive materials and Services for PHD in dramed                                               |
| 0.0       | 81,203  | Review and Add Peoples materials and Review for COC                                                            |
|           | 81-003  | Review and -ACCPTAINTY-INSPIRE and Services for RVID4                                                          |
| 0.0       | 81,203  | Sectors and ANI Provins materials and Bencines for TOP                                                         |
| 0 .       | 81,000  | Divolte material longet de cel lite                                                                            |
|           | 81-1122 | When presenting a file with Rootingst and RootOutput mcDiverts will be pare                                    |
| 0.0       | 81-32-9 | Webster of release 22-02                                                                                       |
| 0 0       | 81-967  | TRODucerary for experiment data                                                                                |
| 0.0       | 81.244  | Fit all samings and systemic remarks from DradioPit, serves presenters dependency, adjust repyright concreates |
| 0 0       | BI-HT   | these the scherp only pretable just in term just works                                                         |
| 0.0       | 81-010  | To DIS, Harrings for ensure-bit                                                                                |
|           | 81-333  | FGE: Cher unpacked His 7 unpacker detects more in data rimoning CRC                                            |
| 0 0       | 81-225  | Add gather from "HCsmppowert                                                                                   |
| 0.0       | 81.205  | Radan sawa Mantinan at wait data anamini in sinendi in Rawakken/Rada                                           |
| 0.0       | 81.257  | Barrary Itals is Different                                                                                     |
| 0.0       | 81-236  | howest memory wage                                                                                             |
| 0.0       | 81.303  | fo/DiganaPositi coator to be called only area                                                                  |
| 0 0       | 0.010   | A tee 1950 sugacher to readult                                                                                 |
| 0.0       | 81.3720 | Kona MCD Hala stan anjarihari 1                                                                                |
| 0 0       | 0.014   | FBD-C under andreases mean                                                                                     |
| 0.0       | 81-8710 | TROEC//sevelatu/installedule has memory leak                                                                   |

### **Analysis software**

DESY, KIT, Munich, Melbourne, Torino, Strasbourg, ..

- Active user support → <u>questions.belle2.org</u>
   Most questions answered in ≦ 12h
- Doc in very good shape → software.belle2.org









tkuhr

TorbenFerber 💻

1208 •17 •33









| Analysis software | 10.2018

Publications: arXiv:1807.08680 BELLE2-PUB-DRAFT-2018-001 Notes: BELLE2-NOTE-PH-2018-031 BELLE2-NOTE-TE-2018-013

Light releases for fast access to new features:

```
> b2setup light-1810-conero
```

Recent analysis-level improvements from:

Curler track tagging TreeFitter (now better than RAVE) EventShape / EventKinematics frameworks Improvements to RestOfEvent

 (Very) new sub-group: multivariate analysis: Unify efforts to tackle NN systematics

### Software Documentation and Training

#### Documentation:

Steadily improving analysis software documentation is now available at <u>https://software.belle2.org</u>

Questions are still asked (and answered) at questions.belle2.org

#### Training:

The third edition of the StarterKit.

the format of the workshop is established, program has been extended and tuned to cover current needs of the collaboration.

- 30 students (thank you for efforts)
- 9 volunteers (many thanks for hard job!)





I. Komarov et al  $_{_{11}}$ 

Now use the full Phase 2 dataset and apply the FEI (Full Event Interpretation) technique based on boosted decision trees (BDTs, a machine learning technique)



We now observe ~571 fully reconstructed B mesons (389+182) or an improvement of a factor of ~O(3.6) in overall efficiency by using this advanced analysis method that covers many more decay channels.

B2NOTE-2018-031-1, W. Sutcliffe, F. Bernlochner Further improvement (X 2) is definitely possible (PID, low p tracking will play a major role).



### Dark Sector @Belle II



| Channel                                                                                                                            | Target luminosity   | Comment                   |
|------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------------------|
| Single Photon $e^+e^-  ightarrow \gamma A'(A' ightarrow inv)$                                                                      | 10 fb <sup>-1</sup> | Need inner KLM            |
| $\begin{array}{c} ALPs \\ e^{\scriptscriptstyle +}e^{\scriptscriptstyle -} \to \gammaa(a{\rightarrow}\gamma\gamma \ ) \end{array}$ | Phase 2             | Publication plan          |
| $Z' \rightarrow invisible$                                                                                                         | Phase 2             | Publication plan          |
| LFV -Z' $\rightarrow$ invisible                                                                                                    | Phase 2             | Publication plan          |
| Magnetic monopoles<br>Details in Backup                                                                                            | Phase 2             | Publication plan          |
| Magnetic monopoles in<br>PXD                                                                                                       | (Phase 2)           | Feasibility study started |

### Z' to Invisible: sensitivity

 90% CL upper limits computed as Poisson counting experiments → conservative estimate (even better significance is expected by fitting the recoil mass distribution).



## B2TiP report finally available

https://arxiv.org/pdf/1808.10567.pdf

KEK Preprint 2018-27 BELLE2-PAPER-2018-001 FERMILAB-PUB-18-398-T JLAB-THY-18-2780 INT-PUB-18-047 UWThPh 2018-26

#### The Belle II Physics Book

E. Kou<sup>74,¶,†</sup>, P. Urquijo<sup>143,§,†</sup>, W. Altmannshofer<sup>133,¶</sup>, F. Beaujean<sup>78,¶</sup>, G. Bell<sup>120,¶</sup>, M. Beneke<sup>112,¶</sup>, I. I. Bigi<sup>146,¶</sup>, F. Bishara<sup>148,16,¶</sup>, M. Blanke<sup>49,50,¶</sup>, C. Bobeth<sup>111,112,¶</sup>, M. Bona<sup>150,¶</sup>, N. Brambilla<sup>112,¶</sup>, V. M. Braun<sup>43,¶</sup>, J. Brod<sup>110,133,¶</sup>, A. J. Buras<sup>113,¶</sup>, H. Y. Cheng<sup>44,¶</sup>, C. W. Chiang<sup>91,¶</sup>, M. Ciuchini<sup>58,¶</sup>, G. Colangelo<sup>126,¶</sup>, H. Czyz<sup>154,29,¶</sup>, A. Datta<sup>144,¶</sup>, F. De Fazio<sup>52,¶</sup>, T. Deppisch<sup>50,¶</sup>, M. J. Dolan<sup>143,¶</sup>, J. Evans<sup>133,¶</sup>, S. Fajfer<sup>107,139,¶</sup>, T. Feldmann<sup>120,¶</sup>, S. Godfrey<sup>7,¶</sup>, M. Gronau<sup>61,¶</sup>, Y. Grossman<sup>15,¶</sup>, F. K. Guo<sup>41,132,¶</sup>, U. Haisch<sup>148,11,¶</sup>, C. Hanhart<sup>21,¶</sup>, S. Hashimoto<sup>30,26,¶</sup>, S. Hirose<sup>88,¶</sup>, J. Hisano<sup>88,89,¶</sup>, L. Hofer<sup>125,¶</sup>, M. Hoferichter<sup>166,¶</sup>, W. S. Hou<sup>91,¶</sup>, T. Huber<sup>120,¶</sup>, S. Jaeger<sup>157,¶</sup>, S. Jahn<sup>82,¶</sup>, M. Jamin<sup>124,¶</sup>,

## Physics week Oct 22-26 @ KEK

- Dark matter lectures: theory, collider searches, direct searches, Belle II studies
  - Stefania Gori (UC Santa Cruz), Patrick Stengel (Stockholm), Hyun-Min Lee (Chung-Ang U)
- Lepton Flavour Universality Violation lectures: B->D<sup>(\*)</sup>I v (I=e, $\mu$ , $\tau$ ), b $\rightarrow$ s II (I=e,  $\mu$ ), theory and experiment (Belle II/LHCb), tutorials on theory programs for B $\rightarrow$ D<sup>(\*)</sup>I v modelling
  - John Gargalionis (Melbourne),
     Dean Robinson (UC Santa Cruz &
     LBL), Takaaki Nomura (KIAS Seoul),
     Guy Wormser (LAL), Shoji
     Hashimoto (KEK)
- Seminars by collaborators on Belle and Belle II measurements and machine learning.
- Informal sessions on latest/recent Belle II rediscoveries and data challenge outcomes.

#### https://kds.kek.jp/indico/event/27330





Social event: Kasama visit + dinner Kasama-no Kiku (Crysanthemum) Matsuri (Festival) Oct 20-Nov 25

# WP1 deliverables

- D1.1 Offline workshop
  - Description: Annual workshops amongst participants to discuss the status of offline software, outstanding issues and possible improvements, and to exchange knowledge amongst involved researchers
  - Due: March 2016
  - Delivered: September 2016
- D1.2 Belle II tutorials
  - Description: Tutorial courses for Belle II members (especially ESRs) attached to Belle II collaboration meetings, to demonstrate the use of physics analysis tools
  - Due: March 2016
  - Delivered: September 2016



# WP1 deliverables

- D1.3 Reference guide
  - Description: Writing and maintaining a reference data reconstruction and analysis tools guide
  - Due: March 2018
  - Delivered: April 2018 (symbolished but not approved yet?)
- D1.4 B2TiP report
  - Description: "Belle II Yellow Report" summarizing all important observables and including a "milestone table", clarifying the targets for the first 5/ab, 10/ab as well as for the final goal at 50/ab
  - Due: March 2017
  - Delivered: May 2017



## Summary

- Belle II/SuperKEKB have completed the phase 2 pilot run, accumulating ~0.5/fb on the Y(4S) resonance and putting also the software to a test
- Beam backgrounds have been significantly over expectation and large efforts have been made to understand the situation
- Nevertheless, physics results are coming, especially in the field of dark sector searches
- WP1 is supporting all these activities
  - All deliverables have now formally been prepared
  - WP1 secondment situation?



### BACKUP

#### SuperKEKB

# Belle II upgrade

- 2011-2018: major upgrade of both the collider and the detector (Belle → Belle II, KEKB → SuperKEKB)
- Physics data taking starts early 2019
- Aim to increase the Belle data set by a factor of 50







 $\beta^*_v$  squeezing



# B2TiP

- The "Belle II Theory Interface Platform" is a joint theory-experiment effort to define the Belle II physics program
- B2TiP is organized in 9 working groups
- The charge of each WG is to identify the "golden modes", perform simulation studies and finally produce a chapter of the B2TiP report
- The activity is driven by a series of workshops







## B2TiP WG structure

| WG1 | Semileptonic & Leptonic B decays              |
|-----|-----------------------------------------------|
| WG2 | Radiative & electroweak penguins              |
| WG3 | $lpha$ ( $\phi_2$ ) and $eta$ ( $\phi_1$ )    |
| WG4 | $\phi_3$                                      |
| WG5 | Charmless hadronic B decays                   |
| WG6 | Charm physics                                 |
| WG7 | Quarkonium-like states                        |
| WG8 | Tau, low multiplicity and electroweak physics |
| WG9 | New Physics (models)                          |







## B2TiP workshop series

- 1. October 30-31, 2014 @ KEK
- 2. April 27-29, 2015 @ Krakow
- 3. October 28-29, 2015 @ KEK\*)
- 4. May 23-25, 2016 @ Pittsburgh\*)
- 5. November 15-17, 2016 @ MIAPP Munich (editorial meeting)

plus the kickoff meeting June 16-17, 2014 @ KEK and a few focused meetings

\*) co-funded by JENNIFER

