T2K status and perspectives

Claudio Giganti (LPNHE) for the T2K Collaboration

JENNIFER Consortium meeting – 30/10/2018

The T2K experiment

- High intensity ~600 MeV v_{μ} beam produced at J-PARC (Tokai, Japan)
- Neutrinos detected at the Near Detectors (INGRID+ND280) and at the Far Detector (Super-Kamiokande) 295 km from J-PARC
- Can run in v or \overline{v} mode by changing horn polarity
- Main physics goals:
 - Observation of v_e and $\overline{v_e}$ appearance \rightarrow determine θ_{13} and δ_{CP}
 - Precise measurement of v_{μ} (\overline{v}_{μ}) disappearance $\rightarrow \theta_{23}$ and Δm^{2}_{32}

Sensitivity to oscillation parameters

- $P(\nu_{\mu} \rightarrow \nu_{\mu}) = P(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{\mu})$
 - Test of CPT conservation
 - Measure $sin^2(2\theta_{23}) \rightarrow weak sensitivity to the octant$
 - * Measure $|\Delta m^2_{23}| \rightarrow \text{cannot distinguish NO and IO}$
- $\mathbf{P}(\nu_{\mu} \rightarrow \nu_{e}) \neq \mathbf{P}(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e})$
 - * Sensitive to CP violation (δ_{CP})
 - * Sensitive to octant of sin²(θ₂₃)
 - * Sensitive to matter effects (hierarchy) → weak in T2K since L is (relatively) short

T2K goals: measure v_{μ} and \overline{v}_{μ} dísappearance and v_{e} and \overline{v}_{e} appearance probabilities

Near Detectors

INGRID: monitor v beam profile and direction during data taking Measure v and \overline{v} cross-sections

WAGASCI + BabyMIND First T2K upgrade (part of T2K since 2018) Measure ν and $\overline{\nu}$ cross-sections on water

ND280 off-axis: detectors installed in the UAI/NOMAD magnet (0.2 T) Fundamental input to T2K OA 2 Fine Grained Detectors → active target for v interactions 3 Time Projection Chambers to measure charge, momentum and PID of leptons emitted in v interactions

Super-Kamiokande

- 50 kton Water Cherenkov detector
 - ~11000 PMTs for ID, ~2000 for OD
- 1000 m underground at Kamioka mine operated since 1996
- Very good PID capabilities to distinguish between v_e and v_{μ} thanks to shape of Cherenkov ring \rightarrow <1% misidentification probability

- * Collected 3.16x10²¹ protons on target (half ν and half $\bar{\nu}$)
 - ~40% of approved p.o.t.
- Reached ~500 kW beam power
- Stability of the beam rate and direction over the whole data taking period measured by INGRID
- Oscillation Analysis results presented at Neutrino2018 with data up to Dec. 2017

T2K oscillation analysis

Flux prediction: Proton beam measurement Hadron production (NA61 and others external data)

 $\frac{\text{ND280 measurements:}}{\nu_{\mu} \text{ and } \overline{\nu}_{\mu} \text{ selections to}}$ constrain flux and cross-sections

7

Prediction at the Far Detector: Combine flux, cross section and ND280 to predict the expected events at SK

Extract oscillation parameters!

<u>Neutrino interactions:</u> Cross-section models External data (Minerva, MiniBooNE, ...) $\frac{SK \text{ measurements:}}{Select CC \nu_{\mu}, \nu_{\mu}, \nu_{e}, \nu_{e}}$ candidates after the oscillations

Flux uncertainties: NA61/SHINE

SK: Positive Focussing (v) Mode, v_{μ}

- Multipurpose detector @ CERN → precision hadron production measurements for T2K (and FNAL) neutrino fluxes predictions
- Took data for T2K in 2007, 2009, 2010 with thin and replica target
- Thin target data already used → 10% uncertainties on neutrino fluxes
- Inclusion of 2010 data with replica target will allow to reduce flux uncertainties to ~5% level

Cross-section uncertainties

- At T2K energies the dominant contributions to crosssection are quasi-elastic
- Other contributions with pions in the final state also important
- Need to take into account nuclear effects (2p=2h, FSI,)
- We developed a new parametrization of the cross-section

- Reduce uncertainties from ~15% to ~5% for both,
 ν_μ and ν_e
- Not covered in this talk → many v and v̄ crosssection measurements

12

v Reconstructed Energy (GeV)

Systematics

	1R µ-like		1R e-like		
	ν -mode	\bar{v} -mode	v -mode	\bar{v} -mode	ν -mode (+1π)
SK detector	2.4 %	2.0%	2.8%	3.8%	13.1%
SK FSI+SI+PN	2.2%	2.0%	3.0%	2.3%	11.4%
ND280 flux & cross-section	2.9%	2.7%	3.0%	2.9%	3.8%
Binding energy	2.4%	1.7%	7.2%	3.0%	3.7%
σ(ν _e)/ σ(ν _μ)	<0.05 %	<0.05 %	2.6%	1.5%	2.6%
Neutral currents	0.3%	0.3%	1.1%	2.6%	1.0%
Total	4.9%	4.3%	8.8%	7.0%	18.3%

- Binding energy is treated as an effective parameter not fitted with ND280 → will be reduced in next round of analysis
- Contributions from flux and cross-section constrained by ND280
- SK detector and FSI+SI uncertainties (not constrained by ND280)
- Only use ν_{μ} selection at ND280 \rightarrow uncertainties due to possible $\nu_e l \nu_{\mu}$ cross-section (theoretical uncertainties)

Oscillation results

- T2K Run 1-9c Preliminary 25 m -Normal MC fit --- Inverted 20 with reactor constraint $-2\Delta \ln(L)$ 15 10 5 -2σ 0.5 0.55 0.35 0.4 0.45 0.6 0.65 0.703 $\sin^2(\theta_{23})$
- World best measurement of sin²(θ₂₃) → compatible with maximal mixing

	NH	IH
$sin^2\theta_{23}$	$0.536\substack{+0.031 \\ -0.046}$	$0.536\substack{+0.031 \\ -0.041}$
l∆m²l	2.434 ± 0.064	$2.410^{+0.062}_{-0.063}$

Oscillation results

- Precise measurement of sin²(θ₂₃)→
 compatible with maximal mixing
- T2K alone and T2K+reactor both prefer values of δ_{CP}~-π/2
- Normal ordering is also favoured

	sin²θ ₂₃ <0.5	sin²θ _{23>} 0.5	SUM
NO (∆m ² ₃₂ >0)	20,4 %	68,4 %	88,8 %
IO (∆m² ₃₁ <0)	2,3 %	8,9 %	11,2 %
SUM	22,7 %	77,3 %	100 %

Comparison with NOvA

- NOvA is the other LBL experiment currently running
 - Plan to have combined T2K/NOvA Oscillation Analysis in 2022
- Currently we both prefer normal ordering
- Preference for maximal CP violation in T2K not confirmed by NOvA
- More statistics is needed!

The future

- Long Baseline Experiments are leading techniques to measure several oscillation parameters (δ_{CP}, θ₂₃, mass ordering)
- Next generation of LBL (DUNE, Hyper-K) will not come online before 2026
- T2K and NOvA will be the leading experiments for the next 8-10 years
- Let's get the best from them!

T2K phase II

- T2K was originally approved to collect 7.8x10²¹ pot
- Driven by sensitivity to θ₁₃
- **Proposal for an extended run**
- T2K-II \rightarrow 20x10²¹ pot
- Upgrade the Main Ring power supply to reach 1.3 MW operations
- v_e : 460 events ± 20% (δ_{CP} and ordering) \overline{v}_e : 130 events ± 13% (δ_{CP} and ordering)
- >3 σ measurement of CP violation (if δ_{CP} close to $-\pi/2$)
- Need to reduce systematics to ~4% (<3% from ND280)

Current ND280 detector

- Most of European groups in T2K were involved in ND280
- Magnetized detector with tracker system
- Precise measurement of particle charge, momenta and PID
 - $\nu\mu$ from $\bar{\nu}\mu$
 - *ν*e from *ν*μ
- Excellent performances so far but optimized to detect forward going tracks

ND280 upgrade

_കം 180,

160

140

120

100

80

60

40

20 ·

0^L

200

400

600

800

1000

- An analysis dedicated to select tracks with high polar angles allow to select 20% of the events in that region
- * We can do better with an upgrade!

2.5

2

1.5

-0.5

1200 1400 Momentum p_e (MeV)

ND280 upgrade

CERN-SPSC-P357

- Replace upstream part of ND280 with an horizontal fully active target (SuperFGD) and 2 horizontal TPCs
- * This will allow to select μ and e at any angle with respect to the beam
- Proposal submitted to CERN SPSC in 2017
- Test beam in Summer 2018 @ CERN, writing TDR now

2017	2018	2019	2020	2021
Proposal	Prototypes, TDR	Construction	Construction	Installation

Upgrade performances

Parameters	Reduction of uncertainties by
Neutríno fluxes	20 %
$\sigma_{\nu}(CCQE/2p2h)$	25—40%
FSI	45%
$\sigma_{\nu}(Q^2 \text{ dependent})$	25 %

- For same POT → Reduce uncertainties on inputs to oscillation analysis by ~30%
- Low momentum threshold and full angular coverage → much better sample to study nuclear effects

Super-FGD

Scintillator cube

WI S fibers

- 2 ton target with 1x1x1 cm cubes read by 3 fibers
- Total of 60k channels read with MPPC
- Full active plastic scintillator target
 - 3D view and reconstruction
 - 4π acceptance
 - Low momentum threshold to reconstruct charged particles
 - Potential to reconstruct neutrons through ToF

Super-FGD test beam @ CERN

- Oct. 2017: 5x5x5 cm³ prototype
- Summer 2018: 24x8x48 cm³ prototype in B-field
 - Test the electronic response, tracking capability, pixel granularities

↑ Amplification gap: ~100μm ↑ E resistive foil: ~75μm Insulator: ~100μm pads

- Design based on existing TPCs
- * 2 volumes per TPC, 8 MicroMEGAS per volume
- * Single box field cage in order to reduce dead materials
- Use resistive MicroMEGAS → developed for ILC TPC prototypes
 - Charged spread on the pads → no sparks
 - Better spatial resolution

HA-TPC test beams @ CERN

- Use HARP field cage with one resistive MM
- Test beam with different particles (e, μ, π, p) and different momenta
- Data analysis on-going

Conclusions

- T2K has been a very successful experiment
 - Discovery of electron neutrino appearance
 - World best measurement of $sin^2\theta_{23}$
 - First hints of CP violation
- T2K-II will be one of the two leading LBL experiments until ~2026
- European groups heavily involved in the Upgrade of the Near Detector in order to reduce systematics and fully profit of the additional statistics
 - Test beams done in 2018
 - TDR being written → submit to J-PARC-PAC by the end of the year
 - Installation at J-PARC in 2021, start data taking 2022

