Status of SuperKEKB and Belle II

Shoji Uno (KEK) JENNIFER general meeting 2018.10.30 Paris

1

SuperKEKB

Key points for SuperKEKB

- Smaller beam size with moderate current
 - Nano beam option
 - Very low emittance
 - Stronger final focusing magnet closer to IP
- Complete new LER ring
 - New antechamber to reduce electron cloud
 - New longer and more bending magnets
- Optimized HER parameters (KEKB ring)
- Complete new IR

Why nano beam?

- Bunch luminosity is limited by several reasons.
 - Beam-beam tune shift limit.
 - Bunch lengthening.
 - Higher bunch current \rightarrow damage hardware component
 - $1.2 \times 10^{31} \text{cm}^{-2} \text{sec}^{-1}$ at KEKB
 - It is not so high as compared with other machines.
- Higher luminosity means larger number of bunches.
 - Factor 2 at TRISTAN
 - Factor \sim 50 or more thanks for pretzel scheme at CESR and LEP
 - Factor ~1600 thanks for double rings at KEKB and PEPII

(also BEPC II, LHC).

We only need to improve the number of bunches by factor of three.
- 5000 (~1600 at KEKB) is real maximum due to RF frequency.

• Super bunch (nano beam) idea improves number of bunches, significantly.

The beam beam shift could not exceed 0.09 even for higher bunch current and even with the crab cavity.

Super bunch (Nano beam)

Each sub bunch collides on opposite sub bunch separately. It means that number of bunches increases significantly.

Ζ

To achieve this scheme, σ_x should be much smaller than σ_z and rather large crossing angle should be applied. Lower emittance and lower β function at IP are required.

SuperKEKB/Belle II schedule

Ohnishi

Smaller β_{y}^{*} (vertical focusing length)

History of β^*_{y}

6 collision tuning

Measured vertical beam size

The beam-beam blow-up is most concerned issue for SuperKEKB to obtain high luminosity.

S. Di Carlo et al. (LAL Orsay)

Achievement of Phase 2 operation

12

Belle II

Requirements for Belle II detector

Target luminosity: $L = 8 \times 10^{35} / \text{cm}^2 / \text{sec}$

Larger beam-related background (×20)

- Finer granularity
- Better timing separation

High trigger rate (×20)

- Pipeline readout

Improvements

- Better particle ID devices
- Better vertex resolution

Belle II Collaboration

As of Oct. 2018

After Phase 1

Roll-in on April 11^{th} , 2017

Construction and installation of the final focusing magnets (QCS) were done.

Damping ring construction and commissioning were performed, also.

Events for first collision on April 26, 2018

50

0

-50

-100

-150

200

First hadronic event

More Events

Bhabha event

BB like event

KLM is working.

ARICH is working.

Mass peaks for charged tracks and photons

20

Particle Identification

Reconstruction of *B* mesons

New method (Boosted Decision Trees) shows better efficiency by factor 3.6.

B2NOTE-2018-031-1, W. Sutcliffe, F. Bernlochner

R2 distribution

data

MC tota MC BB MC qq MC tt

Belle II

Preliminary

L dt = 15 pb⁻¹

2018

Events / (0.04)

4000

3000-

2000

1000

Preparation for Phase 3 operation

- Phase 2 operation ended at July 17th.
- The vertex detector will be installed, soon.
 - The construction was done.
 - The commissioning is underway just before the installation.

SuperKEKB Luminosity Projection

Updated luminosity profile

Summary

- After several years construction, Belle II successfully observed first collision events from the SuperKEKB machine on April 26th, 2018.
 - Belle II detector was basically working.
 - Still, we need more calibration and tuning.
 - It is just the starting point of a long experiment.
- The vertex detector will be installed soon.
 - The phase 3 operation will start in March, 2019.
- Fruitful physics will come soon.
 - Belle II collaboration is still growing.
 - Please come to KEK more frequently and stay longer. 25