Nuclear Structure and Dynamics 2019

• Nuclear structure and reactions far from stability

- Collective phenomena and symmetries
- Dynamics and thermodynamics of light and heavy nuclei
- Sub- and near-barrier reactions
- Fusion and Fission dynamics
- Ab initio calculations, cluster models and shell model
- Nuclear energy density functionals
- Nuclear astrophysics
- Fundamental interactions

Experiment

Nuclear structure via mass measurements

the section of the se

Nuclides measured with JYFLTRAP

- 11 40

JYFLTRAP:

- Over 340 nuclides measured ~100 neutron-deficient ~220 neutron-rich ~20 stable
- More than 50 isomeric states
- Typical precisions: ~10 ppb

Anu Kankainen

Neutron-rich rare-earth isotopes

- 21 rare-earth isotopes measured
- 14 masses measured for the first time
- Mainly TOF-ICR, recently also PI-ICR
- Campaign I: *M. Vilén et al., PRL 120, 262701 (2018)*
- Campaign II: *in preparation*

Deformed in the petrophysical r process

F.G. Kondev

CARIBU & ANL

- SF fission of ²⁵²Cf (3.1%) 1.7 Ci 6.310¹⁰ dps
- Gas Catcher, Isobar Separator (m/Δm~10000).

Masses & Beta-Decay Spectroscopy of Neutron-Rich Nuclei: Isomers & Sub-shell Gaps with Large

Isospin symmetry in the heavier mass region

- Precision measurements of T_Z=+1 nuclei: ⁸²Zr, ⁸⁴Nb, ⁸⁶Mo, and ⁸⁸Tc
- ⁸⁸Tc^m and ⁸⁹Ru (T_Z=+1/2) measured for the first time
- ⁸⁹Ru more bound than predicted in AME16
- MDE predictions for ⁸²Mo and ⁸⁶Ru also more bound and more precise than AME16 extrapolations

Isospin Symmetry of the A=46 T=1 triplet studied with AGATA

di Padova

AGÂTA

OP Conference 2015

M.A.Bentley

- High precision measurement of B(E2)s in T=1 triplet
- Heaviest triplet for which this has been done (so far!)
- No evidence for non-linear behaviour with Tz

Andres Gadea

Lifetime Measurements in ^{106,108}Sn.

- **Direct population of the states**, avoiding the experimental limitations due to the "seniority" isomers
- **Complementary information** to Coulomb-excitation measurements
- Extend the investigation above the 2,+ excited state

Evidence of octupole-phonon at high spin in ²⁰⁷Pb : Study of the octupole phonon in the ²⁰⁸Pb region.

Case of the ²⁰⁷Pb : 1 neutron hole in ²⁰⁸Pb
The first excited states of ²⁰⁷Pb are part of the vp⁻¹ _{1/2} × 3⁻ multiplet with slightly reduced B(E3) with respect to ²⁰⁸Pb due to the p_{1/2} blocking effect
The v(i_{13/2})⁻¹ state band structure : strong coupling effect of the i_{13/2} and f_{7/2} : enhanced B(E3) with respect to ²⁰⁸Pb

D. Ralet, E. Clément et al, submitted to PLB D. Ralet et al., Phys.Scr. 92, 054004 (2017)

Peter Butler

Peter Butler

Structure of ⁷⁰Fe: Single-particle and collective degrees of freedom

- Experiment
 - ⁹Be(⁷¹Co,⁷⁰Fe+γ)X at 87 MeV/u; typical
 ⁷¹Co rate: 65/second
 - ⁷⁰Fe unambiguously identified in the S800, coincident γ rays event-by-event Doppler reconstructed from GRETINA's interaction points
- Results
 - Inclusive cross section for the reaction to happen: 11.0(8)mb
 - Three γ rays observed, one is new, two agree with previous results
 - All three are in coincidence → level scheme established
- A catch Shell model predicts a ⁷¹Co 7/2⁻ ground state and a 1/2⁻ isomer

Alex Gade, Nuclear Structure and Dynamics 2019 10

Alexandra Gade

Spectroscopy of ⁴²Si

The experiment – One-proton knockout from ⁴³P

- Again, one-proton knockout is a direct reaction → probes the single-particle degree of freedom
- ⁴³P: ground state is 1/2⁺ L. A. Riley et al., PRC 78, 011303(R) (2008)
- This means, knockout of sd-shell protons cannot populate $J \ge 4$
- All γ-ray transitions except for the 2743 keV line had been reported in the RIBF two-proton removal experiment

- Be(⁴³P,⁴²Si+γ)X at 81 MeV/u
- Gamma rays in GRETINA and projectile-like reaction residues in the S800

Kathrin Wimmer ウィマー カトリン

In-beam γ -ray spectroscopy at the RIBF

- ⁷⁸Ni is the only neutron-rich doubly-magic nucleus with unknown $E(2^+)$
- within the predicted neutron drip-line
 J. Erler et al., Nature 486 (2012) 509.
- magicity inferred from β -decay

measurements

P. T. Hosmer et al., Phys. Rev. Lett. 94 (2005) 112501,Z. Y. Xu et al., Phys. Rev. Lett. 113 (2014) 032501.

• prediction $E(2^+) = 2 - 4$ MeV

Kathrin Wimmer ウィマー カトリン

東京大学

γ -ray spectra for 78 Ni

 79 Cu $(p, 2p)^{78}$ Ni

- inclusive cross section $\sigma = 1.7(4)$ mb
- highest intensity peak $\rightarrow E(2^+) = 2600(33) \text{ keV}$
- 583(10) keV transition: $4^+ \rightarrow 2^+$ candidate, $R_{4/2} = 1.22(2)$ similar to other doubly magic nuclei

d BEDO at ALTO

Shape coekisterice in the vicinity of

Clément Delafosse

Conclusions

Complete β -delayed γ -spectroscopy of ⁸³Ge

Excited states lifetime measurement of ⁸⁵Se (better precision) and ⁸³Ge (first time)

First observation of a 2p-1h state in a N=51 isotone far from stability : shape coexistence towards N=50

14/03/2013

one-proton knockout reaction at RIKEN: 75Cu and 77Cu 2 SEAST RIBF, Radioactive Ion-Beam Facility at RIKE

N = 40Collectivity in the vicinity of ⁷⁸Ni: Coulomb excitation of neutron-rich Zn at HIE-ISOLDE

 $\nu p_{1/2}$

Revealing microscopic origins of shape coexistence in the Ni isotopic chain

Suzana Szilner

⁶⁰Ni+¹¹⁶Sn: neutron pair transfer far below the Coulomb barrier

The experimental transfer probabilities are well reproduced, in absolute values and in slope by microscopic calculations which incorporate nucleon-nucleon correlations: \checkmark a consistent description of (1n) and (2n) channels

✓ the formalism for (2n) incorporates the contribution from both the simultaneous and successive terms (only the ground-to-ground-state transition has been calculated)
 ✓ character of pairing correlations manifests itself equally well in simultaneous and in successive transfers due to the correlation length

Synthesis of heavy neutron rich nuclei in labs

¹⁹⁷Au+¹³⁰Te: coincident detection of binary partenrs

Y.X. Watanabe

Nuclear production around N = 126 by MNT reaction

KEK Isotope Separation System (KISS)

Experimental results

Fusion hindrance in light and heavy systems G. Montagnoli

Threshold energies for hindrance in light systems

The system ${}^{12}C + {}^{30}Si$ has a ζ parameter very near to the lighter systems important for stellar evolution. Its Q-value for fusion is positive (Q=+14.1 MeV)

¹²C + ²⁴Mg (Q=+16.3 MeV) is even closer to the light systems and has been measured very recently

The case of ${}^{12}C + {}^{20}Ne$ raises questions

N.B. (the points of C+C and O+O are obtained only from extrapolations)

Istituto Nazionale di Fisica Nucleare

G.M., NSD Venezia, May 14, 2019

Pushing the ¹²C+¹²C cross-section to the limits with the STELLA experiment at IPN Orsay

David Jenkins

...measurement of the S-factor with particle-gamma coincidence.

Nuclear physics in stellar lifestyles with the Trojan Horse Method

Aurora Tumino

 $^{0}Ne^{+}\alpha_{1}$

RESEARCH

LETTER

3.0 3.0

An increase in the ${}^{12}C + {}^{12}C$ fusion rate from resonances at astrophysical energies

A. Tumino^{1,2}*, C. Spitaleri^{2,3}, M. La Cognata², S. Cherubini^{2,3}, G. L. Guardo^{2,4}, M. Gulino^{1,2}, S. Hayakawa^{2,5}, I. Indelicato², L. Lamia^{2,3}, H. Petrascu⁴, R. G. Pizzone², S. M. R. Puglia², G. G. Rapisarda², S. Romano^{2,3}, M. L. Sergi², R. Spartá² & L. Trache⁴

Recent results on heavy-ion induced reactions of interest for neutrinoless double beta decay

A new experimental tool

Nuclear reactions Heavy-Ion induced Double Charge Exchange reactions (DCE) to stimulate in the laboratory the same nuclear transition (g.s. to g.s.) occurring in $0\nu\beta\beta$

Manuela Cavallaro

2019 le Dor

⁷⁵As Ν erc NURE The dream: ⁷⁴Ge Extraction from measured cross-sections of "data-driven" information on NME for all the systems candidate for

0νββ

Theory of Heavy Ion Charge Exchange Reactions as Probes for Beta-Decay

Nunzio Itaco

Neutrinoless Double-Beta Decay and Realistic Shell Model

Hiroyuki Sagawa

Single and Double Charge exchange excitations of Spin-Isospin mode

Petr Navratil

ab initio no-core shell model with continuum (NCSMC)

Ab initio predictions for polarized deuteriumtritium thermonuclear fusion

Guillaume Hupin^{1,2,3}, Sofia Quaglioni^{® 3} & Petr Navrátil⁴

NCSMC calculation demonstrates impact of partial waves with l > 0as well as the contribution of l = 0 $J^{\pi} = \frac{1}{2}^{+}$ channel

NCSMC wave functions of ¹¹Be used as input for other studies

• Ab initio calculations of nuclear structure and reactions becoming feasible beyond the lightest nuclei

Make connections between the low-energy QCD, many-body systems, and nuclear astrophysics

Comparison with theory

High experimental precision crucial to test state-of-the-art theory!

Tokuro Fukui¹,

Chiral three-body force and monopole properties of shell-model Hamiltonian

 $\left\langle \left[\left[\bullet \bullet \right] \bullet \right]_{JT} \middle| V_{3N} \middle| \left[\left[\bullet \bullet \right] \bullet \right]_{JT} \right\rangle$

Benchmark test for p-shell

→ Our RSM calculations with 3NF are satisfactorily comparable to the ab initio results.

T. Fukui et al., Phys. Rev. C 98, 04430 (2018).

Monopole properties of *fp*-shell

→ The 3NF-induced monopole Hamiltonian is essential to explain the measured shell evolution.

Y. Z. Ma et al., arXiv:1812.03284.

v C 98 (2018) 064602

Tamara Nikšić

Coexisting shapes in neutron-deficient Nd and Sm isotopes

Elena Litvinova

RQTBA³: partly correlated 3p3h configurations (preliminary results)

- The new complex configurations 2q+2phonon included for the first time enforce fragmentation and spreading toward higher and lower energies, thus, modifying both giant and pygmy dipole resonances;
- Exp. Data: V.A. Erokhova et al., Bull. Rus. Acad.
 Phys. 67, 1636 (2003) O. Wieland et al., Phys. Rev.
 C 98, 064313;
- RQTBA³ demonstrates an overall systematic improvement of the description of nuclear excited states heading toward spectroscopic accuracy without strong limitations on masses and excitation energies.

Pygmy Dipole Resonance in 68Ni

Time-Dependent Hartree-Fock Theory for Multinucleon Transfer Reactions:

Kazuyuki Sekizawa

Production cross sections for N=126 *isotones*

Preliminary

Isotonic distributions for various systems

Quantum equilibration dynamics

Mass	Time to equilibrium	
^{40,48} Ca+ ²³⁸ U, ²⁴⁹ Bk	~ 10 zs	QF
Cr+W and many others Slowed by shell effects		
Isospin	~ 1 zs	
^o Kr+ ²⁰⁰ Pb		
⁷⁸ Kr+ ²⁰⁸ Pb	~ 1.5 zs	DIC
⁵⁸ Ni+ ⁶⁰ Ni		
Mass Fluctuations	~ 3 zs	
⁵⁸ Ni+ ⁶⁰ Ni, Xe+Pb		
S. Ayik, et al. arXiv:1904:09619 (2019)		
vvillariis et al., PRL 120, 022301 (2016)		

Aurel Bulgac

TDDFT Fission Dynamics

Agreement with observations is pretty good and without any fitting parameters, as long as the basic nuclear properties (saturation, surface tension, symmetry energy, Coulomb, spin-orbit, pairing) are well described !

How important is pairing?

 $^{\rm 240}{\rm Pu}$ fission in the normal pairing gap

²⁴⁰Pu fission in a larger pairing gap

Normal pairing strength Saddle-to-scission 14,000 fm/c

Enhanced pairing strength Saddle-to-scission 1,400 fm/c !!! Symmetry-guided and algebraic approaches:

Jerry Draayer	Symmetry Adapted' NCSM Campaign
Jerzy DUDEK	Systematic Search for Tetrahedral and Octahedral Symmetries ^{*)} in Subatomic Physics:
A. Leviatan	Intertwined Quantum Phase Transitions in the Zr Isotopes
Kosuke Nomura	Coexistence and evolution of shapes: mean-field-based interacting boson model
- 16:30 Session XVII – Nobuo Hinohara 15:00 Coexiste boson n	Chair: Daniele Mengoni (Padova University and INF Pairing rotation and pairing energy density functional ased inf
Kosuke 15:30 Shape c Naomi N	Nomura (JAEA, Japan) : oexistence in ⁹⁴Zr studied via Coulomb Excitation Marchini (Firenze University and INFN, Italy)

G. de Angelis (INFN Legnaro) - Chair L. Corradi (INFN Legnaro) - Chair

E. Fioretto (INFN Legnaro) F. Galtarossa (INFN Legnaro) T. Marchi (INFN Legnaro) M. Mazzocco (Uni. and INFN Padova) D. Mengoni (Uni. and INFN Padova) J.J. Valiente-Dobón (INFN Legnaro)

A. D'Este (INFN Legnaro) - Secretary A. Schiavon (Uni. Padova) - Secretary