Study of the neutron-rich region in vicinity of ^{208}Pb via multinucleon transfer reactions

Petra Čolović

Rudjer Bošković Institute, Zagreb, Croatia

Nuclear Structure and Dynamics 2019
Towards neutron-rich heavy nuclei

- **aim**: to exploit the multinucleon transfer reaction mechanism in the production of the neutron-rich heavy binary partners
- **focus**: region **south-east** of the doubly-magic ^{208}Pb nucleus in the Segré chart
- we employed this reaction mechanism in the $^{94}\text{Rb} + ^{208}\text{Pb}$ reaction studied with the MINIBALL γ-array at ISOLDE

$^{94}\text{Rb} + ^{208}\text{Pb}$ cross section distribution [mb] calculated by GRAZING

Program GRAZING [http://www.to.infn.it/~nanni/grazing]
The 94Rb+208Pb experiment

Beam: 94Rb at 6.2 MeV/A, delivered by HIE-ISOLDE
Target: 208Pb, 1 and 13 mg/cm2 thickness

The $^{94}\text{Rb} + ^{208}\text{Pb}$ experiment

Beam: ^{94}Rb at 6.2 MeV/u, delivered by HIE-ISOLDE
Target: ^{208}Pb, 1 and 13 mg/cm2 thickness

Experimental results

- prompt γ-rays within Δt ~ 250 ns
- isomer contribution
- background: strong presence of ^{94}Rb ($\tau_{1/2} \sim 3$ s) β-decay chain

E-θ matrix: separation of Rb-like and Pb-like reaction fragments

E-θ cuts: fragments used for the angular distribution construction
Angular distributions

\[\frac{\sigma}{\sigma_R} \] was obtained gating on fragments without \(\chi \) in coincidence

- experimental distribution: elastic + inelastic + transfer
- normalization at the most forward \(\theta \) → Rutherford scattering
Inelastic and neutron transfer channels

“Thin” (1 mg/cm²) target

- fragment-γ coincidence with Rb-like products
- γ-rays emitted in-flight → Doppler correction with resolution of 1.2% at 1.5 MeV
Inelastic and neutron transfer channels

\[^{207}\text{Pb}(-1n) \quad ^{208}\text{Pb} \quad ^{209}\text{Pb}(+1n) \]

- Selective population
 - yrast states
 - \(^{208}\text{Pb} \): strong 3\(^{-}\) octupole excitation
 - \(^{207,209}\text{Pb} \):
 - \(\rightarrow\) single-particle states
 - \(\rightarrow\) particle (hole) and 3\(^{-}\) coupling scheme
Inelastic and neutron transfer channels

“Thick” (13 mg/cm²) target

- γ-γ coincidences → structure of excited states and isomers
- 210Pb: $10^+ \rightarrow 8^+ (\tau_{1/2} = 201 \text{ ns}) \rightarrow 6^+ (\tau_{1/2} = 92 \text{ ns}) \rightarrow 4^+ \rightarrow 2^+ \rightarrow 0^+$

$\tau_{1/2}$ from R. Broda et al, Phys. Rev. C 98, 024324 (2018)
Inelastic and neutron transfer channels

“Thick” (13 mg/cm2) target

- γ-γ coincidences \rightarrow structure of excited states and isomers

- 210Pb: $10^+ \rightarrow 8^+$ ($\tau_{1/2} = 201$ ns) $\rightarrow 6^+$ ($\tau_{1/2} = 92$ ns) $\rightarrow 4^+ \rightarrow 2^+ \rightarrow 0^+$

$\tau_{1/2}$ from R. Broda et al, Phys. Rev. C 98, 024324 (2018)
Inelastic and neutron transfer channels

$^{210}\text{Pb}(+2n)$

Ongoing analysis: cross section extraction

- extraction of excited states yields
- cross check via γ-γ coincidences
- normalization factor:
 - angular distribution of $3^{-} \rightarrow 0^{+}$ in ^{208}Pb
 - comparison with reaction models (DWBA)
Inelastic and neutron transfer channels

\(^{210}\text{Pb}(+2n)\)

Ongoing analysis: cross section extraction

- extraction of excited states yields ✓
- cross check via \(\gamma-\gamma\) coincidences ongoing
- normalization factor:
 - \(\rightarrow\) angular distribution of \(3^{-}\rightarrow 0^{+}\) in \(^{208}\text{Pb}\) ✓
 - \(\rightarrow\) comparison with reaction models (DWBA)
Perspectives

- degrees of freedom that influence the evolution of MNT reaction (transfer strength)
- the optimal experimental conditions for the production of neutron-rich heavy nuclei (different systems, bombarding energies)

The preliminary results show larger cross sections of channels where neutrons are added to the ^{208}Pb target. MNT reactions with the neutron-rich unstable beam is an efficient reaction mechanism for the production of the neutron-rich heavy nuclei.
Thank you!

P. Ćolović1, A. Illana2, S. Szilner1, J. J. Valiente-Dobon2, L. Corradi2, T. Mijatović1, G. Benzoni3, M. J. G. Borge4, J. G. Cubiss5, G. de Angelis2, E. Fioretto2, F. Galtarossa2, L. P. Gaffney5, M. L. Jurado-Gomez6, Th. Kröll7, T. Marchi2, R. Menegazzo2, D. Mengoni8, D. R. Napoli2, Zs. Podolyak9, F. Recchia8, D. Testov8 in collaboration with MINIBALL and ISOLDE

1Ruđer Bošković Institute, Zagreb, Croatia, 2INFN-LNL, Legnaro, Italy, 3INFN-Milano, Italy, 4IEM, CSIC, Madrid, Spain, 5ISOLDE, CERN, Geneva, Switzerland, 6IFIC, CSIC, Valencia, Spain, 7IKP-TU Darmstadt, Germany, 8UNIPD and INFN-Padova, Italy, 9University of Surrey, Guildford, UK

This work has been supported in part by the Croatian Science Foundation under project no.7194 and in part under project no.IP-2018-01-1257.