Study of the neutron-rich region in vicinity of ²⁰⁸Pb via multinucleon transfer reactions Petra Čolović

Ruđer Bošković Institute, Zagreb, Croatia

Nuclear Structure and Dynamics 2019

Towards neutron-rich heavy nuclei

- aim: to exploit the multinucleon transfer reaction mechanism in the production of the neutron-rich heavy binary partners
- focus: region south-east of the doubly-magic ²⁰⁸Pb nucleus in the Segré chart
- we employed this reaction mechanism in the $^{94}\text{Rb}+\,^{208}\text{Pb}$ reaction studied with the MINIBALL $\gamma\text{-array}$ at ISOLDE

⁹⁴Rb+²⁰⁸Pb cross section distribution [mb] calculated by GRAZING

Program GRAZING [http://www.to.infn.it/~nanni/grazing]

The ⁹⁴Rb+²⁰⁸Pb experiment

Beam: ⁹⁴Rb at 6.2 MeV/A, delivered by HIE-ISOLDE Target: ²⁰⁸Pb, 1 and 13 mg/cm² thickness

N. Warr et al., Eur. Phys. J. A, 49 40 (2013)

CD particle silicon detector

γ-spectrometer MINIBALL

The ⁹⁴Rb+²⁰⁸Pb experiment

Beam: ⁹⁴Rb at 6.2 MeV/A, delivered by HIE-ISOLDE Target: ²⁰⁸Pb, 1 and 13 mg/cm² thickness

N. Warr et al., Eur. Phys. J. A, 49 40 (2013)

CD particle silicon detector

γ-spectrometer MINIBALL

Experimental results

time vs. energy

scattering angle vs. energy

- prompt $\gamma\text{-rays}$ within $\Delta t \sim 250~\text{ns}$
- isomer contribution
- background: strong presence of ⁹⁴Rb (τ_{1/2}~3 s) β-decay chain
- **E-0 matrix**: separation of Rb-like and Pb-like reaction fragments
- **E-θ cuts**: fragments used for the angular distribution construction

Angular distributions

$\sigma/\sigma_{_{\rm R}}$ comparison with GRAZING code

- $\sigma/\sigma_{\rm B}$ was obtained gating on fragments without y in coincidence
- experimental distribution: elastic + inelastic + transfer
- normalization at the most forward $\theta \rightarrow$ Rutherford scattering

"Thin" (1 mg/cm²) target

- fragment-γ coincidence with Rb-like products
- γ -rays emitted in-flight \rightarrow Doppler correction with resolution of

1.2% at 1.5 MeV

Selective population

yrast states

- ²⁰⁸Pb: strong 3⁻ octupole excitation
- ^{207,209}Pb:

 \rightarrow single-particle states

 \rightarrow particle (hole) and 3⁻ coupling scheme

"Thick" (13 mg/cm²) target

- γ - γ coincidences \rightarrow structure of excited states and isomers
- ²¹⁰ **Pb**: $10^+ \rightarrow 8^+ (\tau_{1/2} = 201 \text{ ns}) \rightarrow 6^+ (\tau_{1/2} = 92 \text{ ns}) \rightarrow 4^+ \rightarrow 2^+ \rightarrow 0^+$

 $\tau_{1/2}$ from R. Broda et al, Phys. Rev. C 98, 024324 (2018)

"Thick" (13 mg/cm²) target

- γ - γ coincidences \rightarrow structure of excited states and isomers
- ²¹⁰ **Pb**: $10^+ \rightarrow 8^+ (\tau_{1/2} = 201 \text{ ns}) \rightarrow 6^+ (\tau_{1/2} = 92 \text{ ns}) \rightarrow 4^+ \rightarrow 2^+ \rightarrow 0^+$

 $\tau_{_{1/2}}$ from R. Broda et al, Phys. Rev. C 98, 024324 (2018)

²¹⁰Pb(+2n)

Ongoing analysis: cross section extraction

- extraction of excited states yields
- cross check via γ-γ coincidences
- normalization factor:
 - \rightarrow angular distribution of $3^{-}\rightarrow 0^{+}$ in ²⁰⁸Pb
 - \rightarrow comparison with reaction models (DWBA)

²¹⁰Pb(+2n)

Ongoing analysis: cross section extraction

- extraction of excited states yields
- cross check via γ-γ coincidences ongoing
- normalization factor:
 - \rightarrow angular distribution of 3⁻ \rightarrow 0⁺ in ²⁰⁸Pb \checkmark
 - \rightarrow comparison with reaction models (DWBA)

Perspectives

- degrees of freedom that influence the evolution of MNT reaction (transfer strength)
- the optimal experimental conditions for the production of neutron-rich heavy nuclei (different systems, bombarding energies)

The preliminary results show larger cross sections of channels where neutrons are added to the ²⁰⁸Pb target. MNT reactions with the neutron-rich unstable beam is an efficient reaction mechanism for the production of the neutron-rich heavy nuclei.

	²⁰⁷ Bi	²⁰⁸ Bi	²⁰⁹ Bi	²¹⁰ Bi	²¹¹ Bi	²¹² Bi
	²⁰⁶ Pb	²⁰⁷ Pb	²⁰⁸ Pb	²⁰⁹ Pb	²¹⁰ Pb	²¹¹ Pb
	²⁰⁵ TI	²⁰⁶ TI	²⁰⁷ TI	²⁰⁸ TI	²⁰⁹ TI	²¹⁰ TI
	²⁰⁴ Hg	²⁰⁵ Hg	²⁰⁶ Hg	²⁰⁷ Hg	²⁰⁸ Hg	²⁰⁹ Hg

Thank you!

P. Čolović¹, A. Illana², S. Szilner¹, J. J. Valiente-Dobon², L. Corradi², T. Mijatović¹, G. Benzoni³, M. J. G. Borge⁴, J. G. Cubiss⁵, G. de Angelis², E. Fioretto², F. Galtarossa², L. P. Gaffney⁵, M. L. Jurado-Gomez⁶, Th.Kröll⁷, T. Marchi², R. Menegazzo², D. Mengoni⁸, D. R. Napoli², Zs. Podolyak⁹, F. Recchia⁸, D. Testov⁸ in collaboration with MINIBALL and ISOLDE ¹*Ruđer Bošković Institute, Zagreb, Croatia, ²INFN-LNL, Legnaro, Italy, ³INFN-Milano, Italy,* ⁴*IEM,CSIC, Madrid, Spain,* ⁵*ISOLDE, CERN, Geneva, Switzerland,* ⁶*IFIC, CSIC, Valencia, Spain,* ⁷*IKP-TU Darmstadt, Germany,* ⁸*UNIPD and INFN-Padova, Italy,* ⁹*University of Surrey, Guildford, UK*

This work has been supported in part by the Croatian Science Foundation under project no.7194 and in part under project no.IP-2018-01-1257.