INTERESTING STATES IN A=10 MASS REGION, POPULATED IN $^{10}\text{B} + ^{10}\text{B}$ NUCLEAR REACTIONS

Deša Jelavić Malenica

Ruđer Bošković Institute, Zagreb, Croatia
NUCLEI AROUND A=10

- Shell model states
- Cluster states
- Nuclear molecules
- Bose-Einstein condensates
- ...

^{10}B: spin 3$^+$ in the ground state!

Ivano Lombardo (INFN - Catania, Italy) - Analysis of excited states in ^{13}C and their cluster structure
10B + 10B MEASUREMENT

Beam: ^{10}B, 4+, $I\approx 5\text{enA}$
Energy: 50 and 72.2 MeV

3 detector setups:

- 40°, 20°, 30°, 50°
- 40°, 20°, 20°, 40°
- 46°, 26°, 33°, 53°
nuclei form ^1H up to ^{13}C detected

at both beam energies the number of detected α-particles was remarkably higher than any other detected nuclei

double and triple α-particle coincidences
A coincident detection of three α-particles enabled reconstruction of the $^{10}\text{B} + ^{10}\text{B} \rightarrow 5\alpha$ reaction, and associated ^{12}C spectra of intermediate states.
A coincident detection of three α-particles enabled reconstruction of the $^{10}\text{B} + ^{10}\text{B} \rightarrow 5\alpha$ reaction, and associated ^{12}C spectra of intermediate states.

A new state at $E_x = 24.4$ MeV was strongly populated, showing properties similar to the well known 3^{-} state at $E_x = 9.64$ MeV.
A coincident detection of three α-particles enabled reconstruction of the $^{10}\text{B} + ^{10}\text{B} \rightarrow 5\alpha$ reaction, and associated ^{12}C spectra of intermediate states.

A new state at $E_x = 24.4$ MeV was strongly populated, showing properties similar to the well known 3^{-} state at $E_x = 9.64$ MeV.
Rarely seen state at $E_x = 30.3$ MeV is found to be strong in the $d + ^{10}\text{B}$ decay channel, reinforcing the previous suggestions that it has the exotic $2\alpha+2d$ molecular structure.
In four nucleons transfer reaction channel, excited states of the ^{14}N at $E_x = 13.2$ and 15.39 MeV were measured. Both of them fit nicely to a recent AMD calculations as the head and the 5^+ state of the $^{10}\text{B}(3^+) + \alpha$ rotational band ($K^\pi = 3^+$).

RESULTS FOR ^{14}N
A very strong α-decaying state is seen at the $E_x = 18.9$ MeV in 13C. This state has pronounced 9Be + α structure, and is a good candidate for molecular state with one valence nucleon orbiting around 3 α centers.
AND MANY OTHER CHANNELS...

States that nicely fit into ground state rotational bands of 9B and 9Be these nuclei are clearly observed as their $9/2^-$ members.

The most interesting states in 11B and 11C inclusive spectra are 10.74 MeV in 11C and 11.42 MeV in 11B, which are populated in one nucleon transfer reaction for the first time.
Results were obtained for the 8,9Be, 9,10,11B, 10,11,12,13C, 14N, and 16O nuclei.

Analysis of another experiment: 7Be + 6,7Li on E = 45MeV beam.

Future experiments to reveal characteristics of the new states populated here.
THANK YOU FOR YOUR ATTENTION!

Institut Ruđer Bošković, Zagreb, Croatia
Department of Physics, Faculty of Science, University of Zagreb, Zagreb, Croatia
Instituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Catania, Italia

T. Mijatović, P. Čolović, N. Vukman
Institut Ruđer Bošković, Zagreb, Croatia

This work has been supported in part by the Croatian Science Foundation under project no. IP-2018-01-1257, and project no. 7194.