Revealing microscopic origins of shape coexistence in the Ni isotopic chain

Silvia Leoni – University of Milano and INFN

In collaboration with:

- **B. Fornal** et al., Institute of Nuclear Physics, Krakow, Poland
- **N. Mărginean** et al., IFIN HH, Bucharest, Romania
- C. Michelagnoli et al., ILL, Grenoble, France
- M. Sferrazza et al., Universite libre de Bruxelles, Belgium ٠
- T. Otsuka, Y. Tsunoda et al., University of Tokyo, Japan •

and Dynamics

NSD 2019

Outline

Introduction

Nuclear Shapes and Shape coexistence

• The extreme case of Shape Isomer Unique examples: ^{236,238}U and ⁶⁶Ni

 Our systematic investigation of shape coexistence along the Ni isotopic chain

⁶²Ni, ⁶⁴Ni, ⁶⁵Ni and ⁶⁶Ni Probing state wave functions with different reactions

Map of nuclear deformations

Impact of Nuclear Shapes:

- ABUNDANCES of Heavy Elements depend on the structure of r-process nuclei
- **o FISSION Mechanism**

28

Shape isomers in actinides

• Nucleus trapped In the second minimum

• Spontaneous fission from the second minimum

234Bk	235Bk	236Bk	237Bk	238Bk	239Bk	240Bk	241Bk	242Bk	243Bk	244Bk	245Bk	246Bk	247Bk	248Bk	249Bk	250Bk
233Ст	234Cm	235Ст	236Ст	237Ст	238Cm	239Ст	240Cm	241Cm	242Cm	243Cm	244Cm	245Cm	246Cm	247Ст	248Ст	249Ст
232Am	233Am	234Am	235Am	236Am	237Am	238Am	239Am	240Am	241 Am	242Am	243Am	244Am	245Am	246Am	247 Am	248Am
231Pu	232Pu	233Pu	234Pu	235Pu	236Ри	237Pu	238Pu	239Pu	240Pu	241Pu	242Pu	243Pu	244Pu	245Pu	246Pu	247Pu
230 N p	231Np	232 N p	233Np	234 N p	235Np	236Np	237Np	238Np	239Np	240 N p	241 N p	242 N p	243Np	244 N p	245 N ₽	
229U	230U	231U	232U	233U	234U	235U	236U	237U	238U	239U	240U	241U	242U	243U		
228Pa	229Pa	230Pa	231Pa	232Pa	233Pa	234Pa	235Pa	236Pa	237Pa	238Pa	239Pa	240Pa	241Pa			
227Th	228Th	229Th	230Th	231Th	232Th	233Th	234Th	235Th	236Th	237Th	238Th	239Th				
226Ас	227 Ac	228Ac	229 Ac	230Ac	231 Ac	232Ac	233Ac	234Ac	235Ac	236Ac	237 Ac					

28

Shape isomers in actinides

• Nucleus trapped In the second minimum

• Spontaneous fission from the second minimum

234	Bk 235Bk	236Bk	237Bk	238Bk	239Bk	240Bk	241Bk	242Bk	243Bk	244Bk	245Bk	246Bk	247Bk	248Bk	249Bk	250Bk
2330	im 2340m	235Cm	236Ст	237Cm	238Cm	239Ст	240Cm	241Cm	242Cm	243Cm	244Cm	245Cm	246Ст	247Cm	248Cm	249Ст
2324	Ат 233Ат	234Am	235Am	236Am	237Am	238Am	239Am	240Am	241 A.m	242Am	243Am	244Am	245Am	246Am	247 A.m	248Am
231	Pu 232Pu	233Pu	234Pu	235Pu	236Pu	237Pu	238Pu	239Pu	240Pu	241Pu	242Pu	243Pu	244Pu	245Pu	246Pu	247Pu
230)	Np 231Np	232 N p	233Np	234 N D	235 N p	236 N p	237Np	238 N p	239 N p	240 N p	241 N D	242 N D	24 3 N D	244 N D	245 N D	
229	U 230U	231U	232U	233U	234U	235U	236U	1.371	238U	39U	240U	241U	242U	243U		
228	Pa 229Pa	230Pa	231Pa	232Pa	233Pa	234Pa	2007.4	236Pa	277.4	238Pa	239Pa	240Pa	241Pa			
227	Th 228Th	229Th	230Th	231Th	232Th	233Th	234Th	235 1 %	2361 h	237Th	238Th	239Th				
226	Ac 227Ac	228Ac	229Ac	230Ac	231 Ac	232Ac	233Ac	234Ac	235Ad	236Ac	237 Ac					
	TWO EXCEPTIONS															

SHAPE ISOMER in ²³⁸U: very retarded photon decay (10⁷ hindrance)

TWO SEPARATED WORLDS ...

B(E2)- reduced E2 transition probability

(for almost all known E2 transitions B(E2) > 1 W.u.)

Can OTHER (lighter) nuclei exhibit these features? We think of hindered decay from J^π=0⁺ states! LIGHTER SYSTEMS accessible by state-of-the-art <u>SHELL MODEL</u> calculations could be used to probe the <u>MICROPIC ORIGIN</u> of nuclear deformation

ORIGIN of the existence of different SHAPES in atomic nuclei

SPONTANEOUS SPHERICAL SYMMETRY-BREAKING (single-particle states are degenerate and strongly coupled to a collective mode)

- Transition to deformed shapes as a nuclear Jahn-Teller effect P.-G. Reinhard and E.W. Otten Nuclear Physics A420 (1984) 173-192
- Microscopic Origin of Nuclear Deformations
 W. Nazarewicz
 Nuclear Physics A574 (1994) 27c-49c
- Nuclear deformations as a spontaneous symmetry breaking W. Nazarewicz Int. Journal of Modern Physics E Vol. 2 (1993) 51

appearence of deformation in the **ground state** or in **excited states** (SHAPE coexistence)

STRONG COUPLING between PARTICLES and COLLECTIVE degrees of freedom

SPONTANEOUS SPHERICAL SYMMETRY-BREAKING (single-particle states are degenerate and strongly coupled to a collective mode)

Stability of Polyatomic Molecules in Degenerate **Electronic States** I-Orbital Degeneracy

NUCLEAR

EFFECT

BY H. A. JAHN, Davy-Faraday Laboratory, The Royal Institution AND E. TELLER, George Washington University, Washington, D.C.*

(Communicated by F. G. Donnan, F.R.S.-Received 17 February 1937)

H.A. Jahn and E. Teller, Proc. Roy. Soc. A161 (1937) 220

NON-LINEAR MOLECULES with **SPATIALLY DEGENERATE** electronic ground states undergo a **GEOMETRICAL DISTORTION** that removes that degeneracy

SHAPE Coexistence in Atomic Nuclei

Appearence of states with different shapes at comparable (and low) excitation energies

K. Heyde and J. L. Wood, Rev. Mod. Phys. 83, 1467 (2011)

Through the last 50 years of experimental activities, the concept has evolved:

- exotic rarity (1970')
- islands of occurrence (1990')

<u>Several Talks on Shape Coexistence at NSD19</u> V. Werner, N. Marchini – Zr L. Iskra, E. Sahin, ...

E. Clément et al., Phys.Rev. Lett. 116, 022701 (2016)

Only example of retarded decay from deformed <u>2+ state</u> (B(E2) < 1 W.u.) due to a SHAPE Change

See V. Werner's Talk

C. Kremer et al., Phys. Rev. Lett. 117, 172503 (2016)

The Ni chain: one of the best "grounds" for testing coexistence of nuclear SHAPES

2

0.20

0.10

0.0

✓ Since 1980's
 Mean Field
 Models

Microscopic Hartree-Fock-Bogoliubov

M. Girod, J. P. Delaroche, D. Gogny, and J. F. Berger, Phys. Rev. Lett. 64 (1989) 2452

Microscopic Hartree-Fock plus BCS

0.30

⁶⁶Ni

0.40

β

P. Bonche et al., Nucl. Phys. A 500 (1989) 308

Macro-Microscospic Model

P. Möller, A.J. Sierk, R. Bengtsson,
H. Sagawa, T. Ichikawa
At. Data and Nuc. Data Tables 98(2012)149

The Ni chain: one of the best "grounds" for testing coexistence of nuclear SHAPES

✓ Since 1980's
 Mean Field
 Models

Recently: LARGE SHELL MODEL Calculations

F. Nowacki, S. Lenzi, A. Poves T. Otsuka

Monte Carlo Shell Model Y. Tsunoda, T. Otsuka (Univ. of Tokyo)

- $\circ \ \ Configuration \ space: f_{7/2}, p_{3/2}, f_{5/2}, \\ p_{1/2}, g_{9/2}, d_{5/2}, g_{7/2}$
- Number of configurations **10**²⁰
- New calculation schemes
- Very powerful computing systems
 with **1 000 000 parallel processors** *K-Computer in Tokyo*

MICROSCOPIC UNDERSTANDING: Wave Functions, $B(E\lambda/M\lambda)$, ...

The O⁺ states in Ni isotopes from MCSM calculations

Microscopic interpretation of deformation appearance in ⁶⁶Ni within the Monte Carlo Shell Model approach

Microscopic interpretation of deformation appearance in ⁶⁶Ni within the Monte Carlo Shell Model approach

Joint experimental program at IFIN-HH, ILL, Orsay: search for SHAPE isomers in Ni and probe the wave function component

¹⁸O + ⁶⁴Ni → ¹⁶O + ⁶⁶Ni

σ(⁶⁶Ni) ≈ few mb FUSION strongly suppressed

ROSPHERE

14 HPGe - 1.1% eff 11 LaBr₃(Ce) - 1.75% eff

- THICK Target 5 mg/cm²
- **PLUNGER** 12 distances

From 10 to 3000 μm v/c \approx 2.2 %, TOF of 155 ps in 1 mm

> 1.5 month 30 pnA beam current

2971

1546

3+ 2974

2671

2443

0+2

1549

1245

¹⁸O + ⁶⁴Ni → ¹⁶O + ⁶⁶Ni

σ(⁶⁶Ni) ≈ few mb FUSION strongly suppressed

Powerful Reaction mechanism for direct population of 0⁺ states

 $^{18}O + {}^{64}Ni \rightarrow {}^{16}O + {}^{66}Ni$

S. Leoni, B. Fornal, N. Marginean et al., PRL118, 162502(2017) 0⁺₃ lifetime independently measured by B. Olaizola, et al., PRC95, 061303(R) (2017)

 $^{18}O + {}^{64}Ni \rightarrow {}^{16}O + {}^{66}Ni$

S. Leoni, B. Fornal, N. Marginean et al., PRL118, 162502(2017) 0⁺₃ lifetime independently measured by B. Olaizola, et al., PRC95, 061303(R) (2017)

⁶⁶Ni: lightest and unique example *apart from the actinides* –
of 0⁺ deformed state deexciting via HINDERED γ transition
<u>a SHAPE-ISOMER-like structure !</u>

It is a probe of Monte Carlo Shell Model predictive power:

rearrengement of nucleons in orbitals causes emergence of deformation

PRL 118, 162502 (2017)

PHYSICAL REVIEW LETTERS

week ending 21 APRIL 2017

Ş

Multifaceted Quadruplet of Low-Lying Spin-Zero States in ⁶⁶Ni: Emergence of Shape Isomerism in Light Nuclei

S. Leoni,^{1,2,*} B. Fornal,³ N. Mărginean,⁴ M. Sferraza,⁵ Y. Tsunoda,⁶ T. Otsuka,^{6,7,8,9} G. Bocchi,^{1,2} F. C. L. Crespi,^{1,2} A. Bracco,^{1,2} S. Aydin,¹⁰ M. Boromiza,^{4,11} D. Bucurescu,⁴ N. Cieplicka-Oryňczak,^{2,3} C. Costache,⁴ S. Călinescu,⁴ N. Florea,⁴ D. G. Ghiţă,⁴ T. Glodariu,⁴ A. Ionescu,^{4,11} Ł.W. Iskra,³ M. Krzysiek,³ R. Mărginean,⁴ C. Mihai,⁴ R. E. Mihai,⁴ A. Mitu,⁴ A. Negret,⁴ C. R. Niţă,⁴ A. Olăcel,⁴ A. Oprea,⁴ S. Pascu,⁴ P. Petkov,⁴ C. Petrone,⁴ G. Porzio,^{1,2} A. Şerban,^{4,11} C. Sotty,⁴ L. Stan,⁴ I. Ştiru,⁴ L. Stroe,⁴ R. Şuvăilă,⁴ S. Toma,⁴ A. Turturică,⁴ S. Ujeniuc,⁴ and C. A. Ur¹²
¹Dipartimento di Fisica, Università degli Studi di Milano, I-20133 Milano, Italy
²INFN sezione di Milano via Celoria 16, 20133, Milano, Italy
⁴Horia Hulubei National Institute of Physics and Nuclear Engineering—IFIN HH, Bucharest 077125, Romania
⁵Département de Physique, Université libre de Bruxelles, B-1050 Bruxelles, Belgium

Same features of <u>PROLATE 0⁺ states</u> along the Ni chain:

Probing the wave functions composition by proton and neutron transfer reactions

2n: ¹⁸O +⁶⁴Ni → ¹⁶O +⁶⁶Ni, neutron excitations enhanced (spherical/oblate)
2p: ¹⁴C + ⁶⁸Zn → ¹⁶O + ⁶⁶Ni, proton excitations enhanced (prolate)
NOT FEASIBLE at SUB-BARRIER ENERGIES – checked experimentally !!!

Both reactions are feasible !!!!

2n: ¹⁸O +⁶²Ni → ¹⁶O+⁶⁴Ni, neutron excitations enhanced (spherical/oblate)
1p: ¹¹B +⁶⁵Cu → ¹²C +⁶⁴Ni, proton excitations are enhanced (prolate)

Experiments done in Bucharest (IFIN HH), March and July 2018, March 2019

2n transfer: ⁶²Ni(¹⁸O,¹⁶O)⁶⁴Ni E_b = 39 MeV, neutron excitations favoured (spherical/oblate)

1p transfer: ⁶⁵Cu(¹¹B,¹²C)⁶⁴Ni E_b = 26 MeV, proton excitations favoured (prolate)

 \rightarrow STRONG SELECTIVITY to STATE population

n capture : n + ⁶²Ni -> ⁶²Ni, complete low spins spectroscopy (ILL Approved exp.)

nine O⁺ states

0⁺ 9

0⁺₈

 0^{+}_{7}

0⁺₆

0⁺5

0+4

0⁺3

0⁺2

0+1

5820 MeV

4850

4500

4260

3720

3380

2400

5630 MeV

Joint experimental program at IFIN-HH, ILL, Orsay: search for SHAPE Isomers in Ni and probe the wave function component

- First ODD system studied very challenging !!!
- MONTE CARLO SHELL MODEL Calculations predict for ⁶⁵Ni strong similarities with⁶⁶Ni (T. Otsuka, Univ. of Tokyo)

1n transfer : ${}^{13}C + {}^{64}Ni \rightarrow {}^{12}C + {}^{65}Ni$, medium spins (IFIN-HH, January 2018) **n capture :** $n + {}^{64}Ni \rightarrow {}^{65}Ni$, low spins from capture state (ILL, March 2018)

CONCLUSIONS

 ✓ We have an extended Experimental Program aiming at "Understanding the Microscopic origin of nuclear deformation" → Ni isotopes

One of the most fondamental issue in Modern Nuclear Structure

 HIGH Precision γ-spectroscopy measurements are performed with DIFFERENT REACTION MECHANISMS

Opportunity for reaching unprecedented sensitivity to the state wave-function composition

Key aspect: understanding of REACTION properties Collaboration with L. Fortunato and A. Vitturi (Padua Univ.)

→ Bormio 2020

Organizers

Angela Bracco Franco Camera Silvia Leoni Gianluca Colò

International Advisory

Dieter Ackermann (GANIL, France) Giuseppe Cardella (LNS, Italy) Claes Fahlander (Lund University, Sweden) Michael Jentschel (ILL, France) Adam Maj (IFJ-PAN Krakow, Poland) Augusto Macchiavelli (LBNL, USA) Marco Mazzocco (Padua University and INFN, Italy) Jie Meng (Peking University, China) Petr Navratil (TRIUMF, Canada) Gerda Neyens (KU Leuven, Belgium) Francesco Pederiva (Trento University and INFN, Italy) Peter Reiter (University of Cologne, Germany) Olof Tengblad (CSIC Madrid, Spain) Tomohiro Uesaka (RIKEN, Japan)

wsbormio-milano@mi.infn.it

http://www.mi.infn.it/WSBormio-Milano2020/

<u>Photo</u> 2018 Album 2018

2016 YouTube

AMETEK ORTEC°

UNIVERSITÀ DEGLI STUDI DI MILANO

Vth Topical Workshop on Modern Aspects in Nuclear Structure The Many Facets of Nuclear Structure

BORMIO 4 - 9 February 2020

Università degli Studi di Milano and Istituto Nazionale di Fisica Nucleare (sez. Milano) are pleased to announce the Fourth Edition of this new series of Topical Workshops on Modern Aspects of Nuclear Structure. The meetings are organized every second year in the month of February in Bormio, focusing on specific topics which are relevant for the nuclear physics community and related areas. Within the workshop, experimental and theoretical collaborations will have the opportunity to present and discuss their latest development on physics and more technical issues (Link to Previous Edition Bormio 2018).

> The Workshop is preceded on February 3rd by a Satellite Meeting on "Beta-decay studies: present and future campaigns" (Organizer Giovanna Benzoni - Giovanna.Benzoni@mi.infn.it)

WINNERS of 2018 CAEN Best Young Speaker Award

James Cubiss (York University) Nunzia Simona Martorana (Catania University and INFN) Jørgen Eriksson Midtbø (Oslo University) Tomohiro Oishi (Padua University and INFN) Lars von der Wense (Ludwig-Maximilians-University Munich)