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Our Motivations

We are interested in the present subject because of:

e Nuclear symmetries generating unprecedented degeneracies
in both the individual-nucleonic and collective-rotational levels

e Implied totally new spectroscopy rules in subatomic physics
e We found the first experimental confirmation: 1>2Sm nucleus

e Presence of an unprecedented class of nuclear isomeric states

FURTHER CONSEQUENCES FOR SUBATOMIC PHYSICS:
e New highway towards new exotic nuclei: Long-lived Isomers
e Astrophysics: New magic numbers for the nucleosynthesis
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Content of This Presentation

e From Mean-Field and Group-Representation Theories
to High-Rank Symmetries in Subatomic Physics
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Part 1
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From the Nuclear Mean-Field Theory
to High-Rank Symmetries

in Subatomic Physics
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Tetrahedral Symmetry — Shape Representation

Only special combinations of spherical harmonics may form a basis
for surfaces with tetrahedral symmetry and only odd-order except 5

Three Lowest Order Solutions: Rank < Multipolarity A

A=3: a342=1t3

A =5: no solution possible

A=T: ar42=t;; 746 = —\/%° t7
=+ bo

A=09: ag42=1ty; ag+6

e Problem presented in detail in:
JD, J. Dobaczewski, N. Dubray, A. G6zdz, V. Pangon and N. Schunck,
Int. J. Mod. Phys. E16, 516 (2007) [516-532].
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Nuclear Tetrahedral Shapes — 3D Examples

Illustrations below show the tetrahedral-symmetric surfaces at three
increasing values of rank A = 3 deformations as3»: 0.1, 0.2 and 0.3
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o There are infinitely many tetrahedral-symmetric surfaces

o Nuclear 'pyramids’ do not resemble pyramids very much!
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OBSERVATION:

Tetrahedral symmetry group, Ty,
is a sub-group of the octahedral one, O,
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A Basis for the Octahedral Symmetry

Only special combinations of spherical harmonics may form a basis
for surfaces with octahedral symmetry and only in even-orders:

Three Lowest Order Solutions: Rank <+ Multipolarity A
A=14: Qa0 = 04; Q4,44 = :I:\/% (o)}
A=06: o« =06 Cp,+4= —\/; - Og
65

A=8: oagy=o08 oag+s4= /- 03 og+g= /308

e Problem presented in detail in:

JD, J. Dobaczewski, N. Dubray, A. G6zdz, V. Pangon and N. Schunck,
Int. J. Mod. Phys. E16, 516 (2007) [516-532].
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Nuclear Octahedral Shapes — 3D Examples

Illustrations below show the octahedral-symmetric surfaces at three
increasing values of rank A = 4 deformations o4: 0.1, 0.2 and 0.3

O4 = 0.3

o There are infinitely many octahedral-symmetric surfaces

o Nuclear 'diamonds’ do not resemble diamonds very much!
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Mean Field Theory: Tetrahedral Ga

Double group TdD has two 2-dimensional - and one 4-dimensional
irreducible representations: Three distinct families of nucleon levels
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Full lines <> 4-dimensional irreducible representations - marked with double
Nilsson labels. Observe huge gaps at N=64, 70, 90-94, 100.
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Mean Field Theory: Tetrahedral Ga

Double group TdD has two 2-dimensional - and one 4-dimensional
irreducible representations: Three distinct families of nucleon levels
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Exotic Aspects of High-Rank Symmetries

e Unprecedented degeneracies of nucleonic levels that are neither
equal to (2j 4 1) nor to 2 (time-up, time-down)

Particle—-Hole Excitation Scheme
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Mean Field Theory: Tetrahedral Minima

e Potential energy surfaces manifest well pronounced tetrahedral
minima importantly enriching the shape coexistence phenomena
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Numerous Tetrahedral Doubly-Magic Nuclei

Proton Number
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It may be instructive to recall that in the exact symmetry limit
tetrahedral nuclei emit neither E2 nor E1 transitions — ISOMERS



No E2-transitions within Mean-Field Theory

Indeed, for microscopically calculated quadrupole moments (W.S.)
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Observe that Qx(32) vanishes identically in the W.S. mean-field
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OBSERVATION:

Tetrahedral symmetry generates rotational bands
without rotational electromagnetic transitions
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OBSERVATION:

Tetrahedral symmetry generates rotational bands
without rotational electromagnetic transitions
thus possibly “bands of isomers”

[E; o I(I +1), B(E2) =0, B(E1l)=0]

Jerzy DUDEK, UdS and UMCS Evidence for Octahedral & Tetrahedral Symmetries



SUMMARISING
THIS PART of DISCUSSION




Part I: Special Interests in High-Rank Symmetries

o Theory predicts whole families of nuclear states in many regions
of the Periodic Table compatible with exotic, new symmetries

o These symmetries may lead to well pronounced potential energy
minima and unprecedented, attractive new nuclear mechanisms
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Part I: Special Interests in High-Rank Symmetries

o Theory predicts whole families of nuclear states in many regions
of the Periodic Table compatible with exotic, new symmetries

o These symmetries may lead to well pronounced potential energy
minima and unprecedented, attractive new nuclear mechanisms

o For instance: unprecedented degeneracies of nucleonic levels
that are neither equal to (2j4 1) nor to 2 (time-up, time-down)

o For instance: exotic (16-fold) degeneracies of 2p-2h excitations
o For instance: unprecedented degeneracies of rotational states

o For instance: unprecedented forms of the nuclear rotational be-
haviour - rotational bands without 'rotational (E2) transitions’

o One shows that the high-rank symmetries generate no collective
E1 transitions either what combined with the vanishing of the
E2 transitions brings us to the notion of the “Isomeric Bands”
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Part II: The Notion of Isomeric Bands

e Once tetrahedral nuclei are populated one may expect the
presence of numerous isomers since B(E2) and B(E1) at the
exact tetrahedral and/or octahedral symmetry limits — vanish!
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Part II: The Notion of Isomeric Bands

e Once tetrahedral nuclei are populated one may expect the
presence of numerous isomers since B(E2) and B(E1) at the
exact tetrahedral and/or octahedral symmetry limits — vanish!

e In particular, one expects series of long living (isomeric)
states with unprecedented parabolic energy-spin relation
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Part II: The Notion of Isomeric Bands

e Once tetrahedral nuclei are populated one may expect the
presence of numerous isomers since B(E2) and B(E1) at the
exact tetrahedral and/or octahedral symmetry limits — vanish!

e In particular, one expects series of long living (isomeric)
states with unprecedented parabolic energy-spin relation

Isomers at: E; o I(/ + 1) < Isomeric Bands

e Such states may live much longer than the ground-
states what opens the new... highways towards the new
areas of exotic nuclei in the (Z,N)-plane
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Microscopic Calculations of the Bands: Projected HFB

o After obtaining the constrained HFB state |®), we perform the full quan-
tum number projection from it to obtain the the projected wave function:

INZ(+ INZ(+
(We®y = S 2@ pl P, PN PZ|0),
K
e The amplitude gK 2(%) and the energy eigenvalue E(iNZ(i)
by the so-called Hill-Wheeler relation

ZH/NZ INZ E/NZ +) Z N}/{Nigi INZ(:t)

are obtained

e The kernels are defined by

Hiex” A o svsrs
= (¢ Pl PV PZ Py |®).
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Part 2
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Rotating High-Rank Symmetric Nuclei
Seen Through Group-Representation Theory

[Symmetry Properties of Quantum Rotors]
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Simple Theorems of Group-Representation Theory

e Let G be the symmetry group of the quantum rotor Hamiltonian
o Let {D;, i =1,2, ... M} be the irreducible representations of G
e The representation DU™) of the rotor states with the definite spin-
parity /7, can be decomposed in terms of D; with multiplicities allm,

i

D™ =y, o™ D;

i

e Multiplicities [M. Hamermesh, Group Theory, 1962] are given by:

M
(1) 1 1
a = xir(R)Xi(R) = = > gaxix(Ra)xi(Ra);
NGRGGI() () NGazlal(a) (a)

Ng: order of the group G; {x/=(R), xi(R)}: characters of { DU7) D;}
R: group element; g,: the number of elements in the class «, whose
representative element is R,.
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Elementary T4-Group Properties: Part |

e Tetrahedral group has 5 irreducible representations and 5 classes
e The representative elements {R} are: E, G (= S2), G, 04, Sa
e The characters of irreducible representation of T4 are listed below

| Ta | E GB) GB) dd(2) S(6) |
Ap 1 1 1 1 1
Ao 1 1 1 -1 -1
E 2 -1 2 0 0

F(Ty) | 3 o -1 -1 1

(T | 3 o -1 1 -1

e The characters X/W(R?() for the rotor representations are as follows:

2K ;
Xin(E) = 2141, xix(Ca) = Y e v ', Xin(04) = 7xX1(C2), Xin(Sa) = 7xx1(Ca)
K=—1

e From these relations we obtain ‘employing the pocket calculator’:

M

s 1 I+ I I - I+ I
Al = N—Gz_jlgax,ﬂ(Ra)mea) e a3 = a0 Al = o) ) = olF)
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Elementary Tg4-Group Properties: Part |l

e The number of states al(.lw) within five irreducible representations.
If al(lﬂ) =0 — states not allowed; a,(-lﬂ) =2 — doubly degenerate
[+ Jot 1t 2t 3t 4t 5t et 7t gt ot 10t
AL T 0 o0 o0 1 o0 1 0 1 1 1
Ao o o o 1 o0 O 1 1 o0 1 1
E o o 1 o0 1 1 1 1 2 1 2
F(Ty) /o 1 o 1 1 2 1 2 2 3 2
F(T2)/O0 o 1 1 1 1 2 2 2 2 3
[~ o~ 1= 2= 3 4 5 6 77 8 9= 10
A 0o 0o o 1 0 0 1 1 o0 1 1
Ao 1 o o0 oO0 1 o0 1 0 1 1 1
E o o 1 o 1 1 1 1 2 1 2
F(Ty)|o o 1 1 1 1 2 2 2 2 3
F(T2)Jo 1 o 1 1 2 1 2 2 3 2

e In this way we find the spin-parity sequence for Aj-representation

Ay 07,37,47,67,67,77,87,97,97,10",107,117,2x 12", 127,--.
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The “Take Home' Message

The bottom line for an experimentalist:

The tetrahedral ground-state band /™ = 0*
is composed of the following states:

Ay: 0F,37, 4% 6%, 6—,7,8%, 0,0, 10", 10—, 11—, 2 x 12+, 12—, ...
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The “Take Home' Message

The bottom line for an experimentalist:

The tetrahedral ground-state band /™ = 0*
is composed of the following states:

Ay: 0F,37, 4% 6%, 6—,7,8%, 0,0, 10", 10—, 11—, 2 x 12+, 12—, ...

Its structure has not much in common
with the “usual” one(s), e.g.:

I™ =0%,2%,4%, ...

and implies a new way of thinking (and acting)
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The Era of New Spectroscopy
of Quantum Rotation in Subatomic Physics

[Symmetry Properties of Quantum Rotors]
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The Era of New Spectroscopy
of Quantum Rotation in Subatomic Physics

[Symmetry Properties of Quantum Rotors]

Or:
How to think about future experiments
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Elementary T 4-Group -Theory Band-Properties

@ Representations A; and Ay — band-heads I™ = 0% and opposite parity sequences

Ay 07,37,47,67,67,77,87,97,97,10",107,---

Ag: 07,3%,47,67,67,77,87,97,9", 107, 107, --
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Elementary T 4-Group -Theory Band-Properties

@ Representations A; and Ay — band-heads I™ = 0% and opposite parity sequences

Ay 07,37,47,67,67,77,87,97,97,10",107,---

Ag: 07,3%,47,67,67,77,87,97,9", 107, 107, --

o Representation E — degenerate band-heads I™ = 2& and various parity doublets

E: 2% 4% 5% 6% 7% 2x 8%, oF 2x 107, .-
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Elementary T 4-Group -Theory Band-Properties

@ Representations A; and Ay — band-heads I™ = 0% and opposite parity sequences

Ay 07,37,47,67,67,77,87,97,97,10",107,---

Ag: 07,3%,47,67,67,77,87,97,9", 107, 107, --

o Representation E — degenerate band-heads I™ = 2& and various parity doublets

E: 2% 4% 5% 6% 7% 2x 8%, oF 2x 107, .-

® Representations F; and F; — band-heads I™ = 1% and parity doublets, triplets. . .

Fi: 17,27,3% 4% (2x5%,57),(67,2x67),2x7%,2x 8%, 3x9F,2x97),--

Fo: 17,2%,3% 4% (57 2x57),(2x67,67),2x7%,2x8%, (2x97,3x97),---
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Part 3
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About the Experimental Evidence®
for the First Tetrahedral Rotor Case: 1°2Sm

*) J. Dudek, D. Curien, I. Dedes, K. Mazurek, S. Tagami, Y. R. Shimizu and T. Bhattacharjee;
PHYSICAL REVIEW C 97, 021302(R) (2018)
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A reminder: What and How do We Look For?
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Quantum Rotors: Tetrahedral vs. Octahedral

e The tetrahedral symmetry group has 5 irreducible representations

e The ground-state /™ = 0" belongs to A; representation given by:

Ay 0,37, 4% (6%,67),77,8",(97,97), (107,107), 117, 2 x 12, 127 ...
N—_—— —_—— —— — N——— ™
doublet doublet doublet triplet

Forming a common parabola

e There are no states with spins / = 1,2 and 5. We have parity
doublets: / =6,9,10 ..., at energies: Eg— = Eg+, Eg- = Eq+, etc.
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e The tetrahedral symmetry group has 5 irreducible representations

e The ground-state /™ = 0" belongs to A; representation given by:

Ay 0,37, 4% (6%,67),77,8",(97,97), (107,107), 117, 2 x 12, 127 ...
N—_—— —_—— —— — N——— ™
doublet doublet doublet triplet

Forming a common parabola

e There are no states with spins / = 1,2 and 5. We have parity
doublets: / =6,9,10 ..., at energies: Eg— = Eg+, Eg- = Eq+, etc.

e One shows that the analogue structure in the octahedral symmetry

A : 07,4t 67 87 of 10t ..., I"=1T

Forming a common parabola

Aoyt 37,67,77,97,107,11 ..., I™ =~
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Quantum Rotors: Tetrahedral vs. Octahedral

e The tetrahedral symmetry group has 5 irreducible representations

e The ground-state /™ = 0" belongs to A; representation given by:

Ay 0,37, 4% (6%,67),77,8",(97,97), (107,107), 117, 2 x 12, 127 ...
N—_—— —_—— —— — N——— ™
doublet doublet doublet triplet

Forming a common parabola

e There are no states with spins / = 1,2 and 5. We have parity
doublets: / =6,9,10 ..., at energies: Eg— = Eg+, Eg- = Eq+, etc.

e One shows that the analogue structure in the octahedral symmetry

A : 07,4t 67 87 of 10t ..., I"=1T

Forming a common parabola

Aoyt 37,67,77,97,107,11 ..., I™ =~

Consequently we should expect two independent parabolic structures
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Suggestion:

Look for the experimental evidence
of the tetrahedral and octahedral symmetries
focussing on the N = 90 isotones
for which the best ‘appropriate’ experimental data exist
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The Following Discussion Is Focussed on °2Sm

Total Nuclear Energy
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What Are ‘the Best’ & ‘Appropriate’ Experimental Data?

About criteria for the experimental data search

e Central condition followed here: Nuclear states with exact high-
rank symmetries produce neither dipole-, nor quadrupole moments
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e Such states neither emit any collective/strong E1/E2 transitions
nor can be fed by such transitions — focus on the nuclear processes
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populated with a big number of nuclear reactions since we may
expect that - in such nuclei - the states sought exist in the literature
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25 nuclear reactions, whereas surrounding nuclei can be produced
typically with about a dozen but usually much fewer reactions only
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What Are ‘the Best’ & ‘Appropriate’ Experimental Data?

About criteria for the experimental data search

e Central condition followed here: Nuclear states with exact high-
rank symmetries produce neither dipole-, nor quadrupole moments

e Such states neither emit any collective/strong E1/E2 transitions
nor can be fed by such transitions — focus on the nuclear processes

e Therefore we decided to focus first on the nuclei which can be
populated with a big number of nuclear reactions since we may
expect that - in such nuclei - the states sought exist in the literature

e We have verified that the nucleus >?Sm can be produced by about
25 nuclear reactions, whereas surrounding nuclei can be produced
typically with about a dozen but usually much fewer reactions only

e Energy-wise — they are expected to form regular energy sequences

E; x a212+a11+a
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No Electromagnetic Transitions Expected ...

How do we start looking for rotational bands
without rotational transitions?
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No Electromagnetic Transitions Expected ...

How do we start looking for rotational bands
without rotational transitions?

What To Start With?
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Starting Point in Collecting the Experimental Evidenc

Schematic Illustration
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We begin by looking for experimental
candidates for the ‘reference seed band’
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Schematic Illustration
6 = Tetrahedral band
g with NO E2
We proceed like this: B e
5F 4t 10— 10* £
e We must try to find the sequence B E2 \ Z
- S =
— F 9
4t 6", 87, 107 ... =S F a8
D E + -
- , iy = F s 2
which is parabolic, no E2 transitions = 3F E2 AN =
80 = 10% 7 3
5 F 2
g F ek
= 2F B2 ¢ 7 | %
S &
g E2 g
C + 8
1 6 +/ 2
F 4 o=
S E
g §+:[;Ez 3 oo
- R
g.s.b.

We begin by looking for experimental
candidates for the ‘reference seed band’

Jerzy DUDEK, UdS and UMCS Evidence for Octahedral & Tetrahedral Symmetries



Starting Point in Collecting the Experimental Evidence

Schematic Illustration
6 = Tetrahedral band
E with NO E2
We proceed like this: g . Ll
5; 14 10 == 10* g
e We must try to find the sequence B E2 \ Z
4 e 9t &
4%, 6%, 8%, 10" ... = - ’ 8
D E + o
- . iy = s 2
which is parabolic, no E2 transitions = 3F E2 N =
8 F + 7 eeee- S
. . - s = 10 &2
o If successful, we will fit coefficients = F B - +/ =
=2k 6 - 6 g
of the reference seed-band parabola F g 3
C @
S /
1 6 —'— ¥ 3
= 4 St
E + E2 - &
g §+:l;m 3 aroes
- R
g.s.b.

We begin by looking for experimental
candidates for the ‘reference seed band’

Jerzy DUDEK, UdS and UMCS Evidence for Octahedral & Tetrahedral Symmetries



Starting Point in Collecting the Experimental Evidence

Schematic Illustration
6 = Tetrahedral band
g with NO E2
We proceed like this: B . e
5; 14 10 -==— 10% g
e We must try to find the sequence B E2 \ Z
4 = 9t =
4%, 6%, 8%, 10" ... = - ’ o
S E gt B
I . . c Z
which is parabolic, no E2 transitions 2: 3F E2 AN =
80 = 10% 7 3
. . . . s E =]
o If successful, we will fit coefficients s F B2 - e
R 2F 6 - 6 E
of the reference seed-band parabola S 3
: . g E2 g
e Once this parabola is known — we S 8
) . = 5
select other experimental candidate g L, E2 4t z
states - close to reference seed-band S £E2 R
= ot CE
g.s.b.

We begin by looking for experimental
candidates for the ‘reference seed band’
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Start Looking for the Reference Band with no E2’s

e We must try to find the sequence which is parabolic, no E2 transitions

4% 6t 8%, 10" ...

!

152§m

Experimental spectrum of 152Sm from NNDC data base
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| could NOT stop laughing seeing it for the first time

e We must try to find the sequence which is parabolic, no E2 transitions
4% 6t 8%, 10" ...

@ @
Kpi-0+ g5, band
e gws B K=
|, Kpi=0+ beta-vib. band © o 5516
s Kpi=0- octupole vib. band an
S L, 2 i © KoL (e PR
o a2 i=1- (even) i
@ i) !, " ® Kpi-l-
16 Lsssso 1 fo, J sk s Kpicl-(odd) w74 _1s uw 1 EIOTIS
= ases 1 J Kpi=2+ g-vib. band(odd) /
> - . 2052100
- 2 ms-s 99 ok ﬂ s /
2! o mu o 25w
2 ¥ 5 w e
;

Experimental spectrum of 152Sm from NNDC data base:
Notice the fantasist nomenclature of the bands
. invented long ago by an NNDC data base evaluator(s)
“OUR BAND?” is called ... Band (T) like ...
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| could NOT stop laughing seeing it for the first time

e We must try to find the sequence which is parabolic, no E2 transitions
4% 6t 8%, 10" ...
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Experimental spectrum of 152Sm from NNDC data base:
Notice the fantasist nomenclature of the bands
. invented long ago by an NNDC data base evaluator(s)

“OUR BAND?” is called ... Band (T) like ... (T)ransportable
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| could NOT stop laughing seeing it for the first time

e We must try to find the sequence which is parabolic, no E2 transitions
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Experimental spectrum of 152Sm from NNDC data base:
Notice the fantasist nomenclature of the bands
. invented long ago by an NNDC data base evaluator(s)

“OUR BAND” is called ... Band (T) like ... (T)ransportable or (T)ransatlantic
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| could NOT stop laughing seeing it for the first time

e We must try to find the sequence which is parabolic, no E2 transitions
4% 6t 8%, 10" ...
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Experimental spectrum of 152Sm from NNDC data base:
Notice the fantasist nomenclature of the bands
. invented long ago by an NNDC data base evaluator(s)

“OUR BAND” is called ... Band (T) like ... (T)ransportable or (T)ransatlantic
or (T)etrahedral ... or
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However: Ban ) Was NOT the Sequence Satisfying Our Criteria

e We must try to find the sequence which is parabolic, no E2 transitions
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Experimental spectrum of 152Sm

By the way, band (T) was NOT retained in the final analysis
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Next Steps in the Procedure

We Proceed Looking for the Other Candidate States

Criterion no. 1:
Accepted states must neither be populated nor depopulated by any
strong E1 or E2 transitions, preferably populated by nuclear reaction

Criterion No. 2:
Their energies should be ‘reasonably’ close to the reference parabola

Observation:
Since they do not decay via a single strong transition it is instructive
verifying that they decay into several states — with weak intensities
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Next Steps in the Procedure: Part Il

A typical diagram among a hundred in this analysis

Feedig the tetrahedral /™ = 3~ candidate (among five others)

Feeding and Decay of 1041 keV 3~ level

Baodl BadK BaudL BandP BundR
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P B Y e ’
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10411 S Y Y ’ ’ fot ‘ ‘ ’
AR
oo ., LEDA0BED L (MI1+E2):BE2)+10'BOM1)
- s & . .
o 1218 Iv(EZ)'B(Ez) dotted line: strength not known
T

Let us note that 3~ does not decay to the 0" ground-states (suggesting that it is
not an octuple vibrational state built on the other) and that there are numerous
states populating it suggesting that its structure is exotic from our point of view.

[By the way, this state was not retained at the final steps]
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Next s in the Procedure: Part Il

A typical diagram among a hundred in this analysis

Decay from the tetrahedral I™ = 3~ candidate (among five others)

13717

3

o 10230 2+ 10858
> 8105 = 9634

0

6848

- 3665

or 00

Let us observe that this state decays to many others suggesting its ‘exotic’
structure of interest in our context
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Next s in the Procedure: Part Il
A typical diagram among a hundred in this analysis
Decay from the tetrahedral /™ = 4" candidate level

#
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z 0.0
Let us observe that this state decays to many others via very weak transitions

suggesting no resemblance to quadrupole-deformed rotational states...

and many, many other states analysed within this project...
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Tetrahedral Band: Our First Candidate

Proposed experimental energy levels candidates as members of the tetrahedral
band in ®2Sm after analysing numerous hypotheses. Columns 3 and 4 give the
numbers of decay-out transitions and feeding transitions, respectively.

‘ Spin ‘ E[keV] No. D-out ‘ No. Feed ‘ Reaction

3~ 1579.4 10 none CE & o
4+ 1757.0 9 1+(1) CE & o
6~ 1929.9 2 (1) CE & o
6" 2040.1 7 none CE & o
7 2057.5 6 2+4(1) CE & o
8t 2391.7 3 1 CE & o
9~ 2388.8 4 3 CE & o
9+ 2588 2 1 «
10~ 2590.7 4 1 «
2 none «
(10%) 2810
11~ 2808.9 2 none CE
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Parabolic Relations: R.M.S.-Deviation Analysis (I)

Tetrahedral Symmetry Hypothesis: One Parabolic Branch

Ay 0f,37,4% (67,67), 77,8, (97,97), (1017,107), 117, 2 x 12+, 127, - ..
N—— —_——— ——— N——— ——
doublet doublet doublet triplet

Forming a common parabola

e We performed the test of the tetrahedral A;j-type hypothesis by fitting the parameters
of the parabola to the energies in the Table. The obtained root-mean-square deviation:

Ty: AL = r.ms.~80.5keV <« 11 levels I™ = |+

For comparison:

G.sb. — r.ms.~524keV < 7levels I™ =T
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Parabolic Relations: R.M.S.-Deviation Analysis (II)

Octahedral Symmetry Hypothesis: Two Parabolic Branches

Aig: 0T, 4% 61,87 9% 107, ..., I" =17

Forming a common parabola

Asy: 37,67,77,97,107,117,..., I = [~

o We performed the test of the octahedral Aj4-Az, hypothesis by fitting the parameters
of the parabolas to the energies in the Table. The obtained root-mean-square deviations:

Op: Alg = rrms. = 1.6keV < 5levels I™ = It

Op: Ay — rms.~75keV <« 6levels I™ = [~

For comparison:

Ts: A1 — r.m.s.~80.5keV < 11 levels /™ = I+
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Dominating Octahedral-Symmetry Hypothesis

Experimental Results [Tq-vs.-Oy]

Symmetry Hypotheses:

Tetrahedral: T4
A; — r.m.s.=80.5 keV

Octahedral: Oy,
Ay — rams.=1.6 keV
Asy — r.m.s.=7.5 keV 6+

a0 O

Rotational Energy [MeV]
T T T T T T T T
T T T T Y I Y |

I -
Ao 0 O W

n
[0.}
1 1 1 1 1 1 1 1 1 1 1 1 1
152 01 2 3 4 5 6 7 8 9 10 11 12
62 Spin &

Graphical representation of the experimental data from the summary Table.
Curves represent the fit and are not meant ‘to guide the eye’. Markedly, point

[I™ = 0%], is a prediction by extrapolation - not an experimental datum.
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A Comment About Extrapolation to I” — 07

Experimental Results [Tq-vs.-Oy]

Symmetry Hypotheses:

Tetrahedral: T4
A; — r.m.s.=80.5 keV

a0 O

rr1rrrrrrrrrrrrrrr

Octahedral: Oy,
Ay — rams.=1.6 keV

2.2

T T T T Y I Y |

Rotational Energy [MeV]

Asy — r.m.s.=7.5 keV 6+
2.0
1.8
00
14F @
1 1 1 1 1 1 1 1 1 1 1 1 1
15 0 1 2 3 4 5 6 7 8 9 10 11 12
62 Spin &

Notice: The negative parity sequence lies entirely below the positive parity one.
Extrapolating the parabolas to zero-spin we find E,_; = 1.396 8 MeV compared
to E;", = 1.396 1 MeV, the difference of 0.7 keV at the level 1.4 MeV excitation!
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SUMMARISING
THIS PART of DISCUSSION




Coexistence: Oy, ‘Slightly’ Broken by Subgroup Ty

e The two branches characteristic for octahedral symmetry are very
close to the single parabola predicted for the tetrahedral symmetry
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Coexistence: Oy, ‘Slightly’ Broken by Subgroup Ty

e The two branches characteristic for octahedral symmetry are very
close to the single parabola predicted for the tetrahedral symmetry

e In general, positive- and negative-parity parabolas do not need to
lie so closely with energies placed symmetrically about the third one
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Coexistence: Oy, ‘Slightly’ Broken by Subgroup Ty

e The two branches characteristic for octahedral symmetry are very
close to the single parabola predicted for the tetrahedral symmetry

e In general, positive- and negative-parity parabolas do not need to
lie so closely with energies placed symmetrically about the third one

e This signifies coexistence of two symmetries — but not just any
symmetries! Tetrahedral group is a subgroup of the octahedral one
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Coexistence: Oy, ‘Slightly’ Broken by Subgroup Ty

e The two branches characteristic for octahedral symmetry are very
close to the single parabola predicted for the tetrahedral symmetry

e In general, positive- and negative-parity parabolas do not need to
lie so closely with energies placed symmetrically about the third one

e This signifies coexistence of two symmetries — but not just any
symmetries! Tetrahedral group is a subgroup of the octahedral one

e The negative parity branch lies entirely below the positive parity
branch: Can positions of rotational band members be ‘accidental’?
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Coexistence: Oy, ‘Slightly’ Broken by Subgroup Ty

e The two branches characteristic for octahedral symmetry are very
close to the single parabola predicted for the tetrahedral symmetry

e In general, positive- and negative-parity parabolas do not need to
lie so closely with energies placed symmetrically about the third one

e This signifies coexistence of two symmetries — but not just any
symmetries! Tetrahedral group is a subgroup of the octahedral one

e The negative parity branch lies entirely below the positive parity
branch: Can positions of rotational band members be ‘accidental’?

e What is the probability that “due to enormous complexity of the
nuclear interactions” the discussed energies are positioned in reality
at random and the discussed structures incidentally form parabolas?

P\/;:BO keV ~1.1. 10—14

T4 — incidental : 11 levels
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Uncertainties and Completing the Information

e The above results are compatible with coexistence of tetrahedral
and octahedral symmetries predicted by the mean-field calculations
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Uncertainties and Completing the Information

e The above results are compatible with coexistence of tetrahedral
and octahedral symmetries predicted by the mean-field calculations

e At the same time they are compatible with the very constraining
group-theory conditions: mixing odd-, and even spins, doublets, etc.
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Uncertainties and Completing the Information

e The above results are compatible with coexistence of tetrahedral
and octahedral symmetries predicted by the mean-field calculations

e At the same time they are compatible with the very constraining
group-theory conditions: mixing odd-, and even spins, doublets, etc.

e One may be tempted to conclude that the experimental results in
the form of two parabolas identify the presence of both discussed
symmetries in 1%2Sm nucleus. However — data contain uncertainties
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Uncertainties and Completing the Information

e The above results are compatible with coexistence of tetrahedral
and octahedral symmetries predicted by the mean-field calculations

e At the same time they are compatible with the very constraining
group-theory conditions: mixing odd-, and even spins, doublets, etc.

e One may be tempted to conclude that the experimental results in
the form of two parabolas identify the presence of both discussed
symmetries in 1%2Sm nucleus. However — data contain uncertainties

e Emphasise: None of the geometrical nuclear symmetries can be
considered exact because of the zero-point motion (Bohr model)
and various polarisation mechanism, e.g. by nucleons outside shells

Jerzy DUDEK, UdS and UMCS Evidence for Octahedral & Tetrahedral Symmetries



Uncertainties and Completing the Information

e The above results are compatible with coexistence of tetrahedral
and octahedral symmetries predicted by the mean-field calculations

e At the same time they are compatible with the very constraining
group-theory conditions: mixing odd-, and even spins, doublets, etc.

e One may be tempted to conclude that the experimental results in
the form of two parabolas identify the presence of both discussed
symmetries in 1%2Sm nucleus. However — data contain uncertainties

e Emphasise: None of the geometrical nuclear symmetries can be
considered exact because of the zero-point motion (Bohr model)
and various polarisation mechanism, e.g. by nucleons outside shells

e Consequently relatively weak electromagnetic transitions are to be
expected and this mechanism can/should be used to obtain a more
complete information about electromagnetic decay, transition details
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Part 4
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How To Maximise the Effect of Symmetries?

Highly Deformed Tetrahedral and/or Octahedral
Configurations
Based On the Deformation-Driving Orbitals
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Deformation-Driving Particle-Hole Configurations

Nucleon Levels in Woods-Saxon Mean Field
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e Exciting down-sloping orbitals from up-sloping orbitals we construct:

— Strongly deformation-driving configurations
and
— Gain several MeV in terms of excitation energy
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How Powerful This Mechanism Is: lllustration 2

| | | | | | | | |
14 | -
s 2r 2p-2h iy
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i
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0
*[ 152Sm ]
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0O 005 01 015 02 025 03 035 04
Tetrahedral Deformation t,

e Constructing particle-hole excited configurations with down-, and up-
sloping orbitals we gain several MeV: Deformations increase significantly!
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Improving Degeneracies with Increasing Deformation

SHINGO TAGAMI, YOSHIFUMI R. SHIMIZU, AND JERZY DUDEK PHYSICAL REVIEW C 87, 054306 (2013)
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FIG. 4. Calculated spectra of tetrahedral states in 10Yb with @ = 0.10, 0.15, 0.20, 0.25, 0.30, and 0.35, respectively, for (a), (b), (¢), (d),
(e), and (f). The dotted line in each panel denotes an ideal /(1 + 1) sequence going through the first excited 3~ state. Note that almost exact
degeneracies for / = (67,67),(97,97). (107, 107), (2 x 12%, 127) states are obtained for ¢35 > 0.25 demonstrating the nearly perfect rotor
character of the rotational excitation of the system.

Observe the sequences containing both parities; note also degeneracies
I™ = 6%, 1" = 9%, I” = 10%, ..
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Technical Construction Problem: Level Crossings
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e We will need to construct the maps of the potential energy surfaces for
n-particle n-hole excited states
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Technical Construction Problem: Level Crossin
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e We will need to construct the maps of the potential energy surfaces for
n-particle n-hole excited states

e However: In general, there exist numerous level crossings as above
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Technical Construction Problem: Level Crossing
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e We will need to construct the maps of the potential energy surfaces for
n-particle n-hole excited states

e However: In general, there exist numerous level crossings as above

e We will need an automatic algorithm of the level crossing removal!
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Heuristic Considerations Based on Two-Level Model

e Consider Hamiltonian H with two eigenstates. The matrix representation
of solutions within a basis say, ¢; and ¢,, can be given as:

V) = +ag; + B
Yy = —f¢1 + ags

$ ~ Y Porrod,
. A 7 > ) :
o ~ L =
5 S [l<lal 7 |Bbla
w Phd RN w

(N ‘ 7 wymag+Bo,

Deformation Deformation

e Schematic illustration of the two discussed variants of the level crossing:

— Left: No mixing and no repulsion of levels, levels cross
— Right, full lines: Mixing, the levels repel each other
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Level Crossing ‘Removal’: Position of the Problem

e How to construct an automatic algorithm, which connects the
levels of the same structure before the crossing and after the cross-
ing, rather than connecting the levels according to the energy order:

“The first level connected always with the first level”,
“The second level connected always with the second”.
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Level Crossing ‘Removal’: Position of the Problem

e How to construct an automatic algorithm, which connects the
levels of the same structure before the crossing and after the cross-
ing, rather than connecting the levels according to the energy order:

“The first level connected always with the first level”,
“The second level connected always with the second”.

e Consider two successive deformation points, one to the left of the
crossing point, “L" and one to the right of the crossing point, “R"
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Level Crossing ‘Removal’: Position of the Problem

e How to construct an automatic algorithm, which connects the
levels of the same structure before the crossing and after the cross-
ing, rather than connecting the levels according to the energy order:

“The first level connected always with the first level”,
“The second level connected always with the second”.

e Consider two successive deformation points, one to the left of the
crossing point, “L" and one to the right of the crossing point, “R"

e We say that a single particle state g (k| at R is of a similar structure
compared to |m), at L, if and only if the absolute value of the scalar
product of corresponding eigenvectors at L and R is close to 1, i.e.:

|L(klm)gr| = 1

and dissimilar otherwise
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SUMMARISING
THIS PART of DISCUSSION




The Mechanism of Increasing Symmetry Effects

e By activating down-sloping and deactivating up-sloping orbitals
we gain huge amounts of excitation energy in terms of several MeV
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The Mechanism of Increasing Symmetry Effects

e By activating down-sloping and deactivating up-sloping orbitals
we gain huge amounts of excitation energy in terms of several MeV

e In this way we increase the tetrahedral equilibrium deformation
emphasising manifestations of the corresponding symmetry, also Oy,

Jerzy DUDEK, UdS and UMCS Evidence for Octahedral & Tetrahedral Symmetries



The Mechanism of Increasing Symmetry Effects

e By activating down-sloping and deactivating up-sloping orbitals
we gain huge amounts of excitation energy in terms of several MeV

e In this way we increase the tetrahedral equilibrium deformation
emphasising manifestations of the corresponding symmetry, also Oy,

e The quantum rotor degeneracies become now more and more strict
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The Mechanism of Increasing Symmetry Effects

e By activating down-sloping and deactivating up-sloping orbitals
we gain huge amounts of excitation energy in terms of several MeV

e In this way we increase the tetrahedral equilibrium deformation
emphasising manifestations of the corresponding symmetry, also Oy,

e The quantum rotor degeneracies become now more and more strict

e This encourages studying also the ‘excited tetrahedral bands’ and
comparative studies: Bands related to irreps A; and Aj, partner
parity doublets of irrep E & parity doublets and triplets of F; and F»
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The Mechanism of Increasing Symmetry Effects

e By activating down-sloping and deactivating up-sloping orbitals
we gain huge amounts of excitation energy in terms of several MeV

e In this way we increase the tetrahedral equilibrium deformation
emphasising manifestations of the corresponding symmetry, also Oy,

e The quantum rotor degeneracies become now more and more strict

e This encourages studying also the ‘excited tetrahedral bands’ and
comparative studies: Bands related to irreps A; and Aj, partner
parity doublets of irrep E & parity doublets and triplets of F; and F»

e All these arguments bring us to the question of the optimisation
of the population of the highly excited states via nuclear processes!
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The Mechanism of Increasing Symmetry Effects

e By activating down-sloping and deactivating up-sloping orbitals
we gain huge amounts of excitation energy in terms of several MeV

e In this way we increase the tetrahedral equilibrium deformation
emphasising manifestations of the corresponding symmetry, also Oy,

e The quantum rotor degeneracies become now more and more strict

e This encourages studying also the ‘excited tetrahedral bands’ and
comparative studies: Bands related to irreps A; and Aj, partner
parity doublets of irrep E & parity doublets and triplets of F; and F»

e All these arguments bring us to the question of the optimisation
of the population of the highly excited states via nuclear processes!

e The vanishing E1 and E2 transitions at the exact symmetry limit
emphasises the detection via modern mass spectrometry methods
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Recent Experimental Evolution:
Collaboration GSI Strasbourg
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Specifically Designed Facilities at the GSI

e FRS [FRagment Separator]; e LEB [Low-Energy Branch]
e MR-TOF-MS [Multiple-Reflection Time-of-Flight Mass Spectrometer]

FRS lon Catcher a Test Facility for the LEB

100...1500 Me ~ MeV/u ~eV

Fragment Buncher / Stopping MR-TOF Experiments
| JEIoet Separat Degrad Trap, L.
Prima eparator egrader Cell Ms (Trap, Laser,..)
Beam |n_flight In-flight entum Stopping / Isob
1 Production Separation ; ‘Compr i Thermalization aration ;
T Y T
SuperFRS LEB ) MATS / LaSpec
U @ 1000 MeV/u gl T
[¢C N
procuction NI }%W,m vesntesnttas JUSTUS-LIEBIG-
. @ university of UNIVERSITAT
16 J::r??a'emh & / il cesseNn I B5m IL

nic
MUSIC Stopping Cell
Slits Diagnostics

nit
Scintillator

Degraders |
music

s | Dograders
I T MR-TOF-MS

Scintilator W.R. PlaB et al., NIM B 317 (2013) 457
T Dicksl, Resulfs from the FRS lon Catcher vith projectile and fission fragments, NUSTAR Annuial Meeting, Dammstadt/GS, March 2 - 6, 2015
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Specifically Designed Facilities at the GSI

e Scatter plot of all known isomers [from the NUBASE 2016 database]. In the ms
region there are fewer isomers known. This coincides with the region relatively diffi-
cult to access for decay spectroscopy and ‘traditional’ mass spectrometry techniques.

10"y

MS (SMS, TOF-ICR)

MS and isomeric
beams with MR-TOF

Half-Life / s
6‘»‘\;

YY coincidence

Excitation energy / keV

e GS| system MR-TOF-MS can measure about 2 orders of magnitude faster then
the existing high resolution mass spectrometry techniques: Accessing region in red!

e TOF-ICR [Time of Flight lon Cyclotron Resonance]; ¢ MS [Mass Spectrometry]; o

SMS [Schottky Mass Spectrometry]; ¢ MR-TOF Multiple Reflection Time of Flight
e Other MR-TOF facilities: ISOLDE, RIKEN, TRIUMF
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Examples of Isomer Measurements
Uranium Fission Fragments

» Mass measurement of uranium fission products produced at 1000 MeV/u
* MR-TOF-MS will enable efficient search of new isotopes and isomers

m/Am = 360,000

133Cg

334 keV/c?

1634 keV/c? foam
—
133)

Counts

133
138m| Te

10

1
132.904 132.906 132.908 132.910

Mass-to-Charge / (u/e)
S. Ayet

etal.

. Dickel, Isomer Studies with the FRS lon Catcher, Super-FRS Experiement Collaboration Meeting, Walldorf, Germany, May 2 - 4, 2018

e MR-TOF-MS [Multiple-Reflection Time-of-Flight Mass Spectrometer]
e Approximate FWHM of the peaks is of the order of 300 keV.

Evidence for Octahedral & Tetrahedral Symmetries
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Perspectives of Specifically Designed Experiments

Perspectives of New Measurements

The FRS lon Catcher

» Powerful tool for the measurement of isomers:
Identification, excitation energies, isomeric ratios
* Isomer-clean beams ) o ——— oo

Counts /'s
3

2 .
&
Half-Life /s

Counts /s~

o
0 10 o 1o
Excitation energy / keV'

700 7200 7300 7400 7500
w-Energy / keV/

Experiment proposal for next G-PAC focusing on experiments for long-lived isomers:
» Spectroscopy of isomer-clean beams

« Search for tetrahedral isomeric states J. Dudek, A. Jain,
«  New isomer search S. Pietri, P. Walker,

» Isomeric ratios for reaction studies Z Patyk’;
» Half-life and decay modes You?

one day workshop on ideas for “isomer” proposal planed

T. Dickel, Isomer Studies with the FRS lon Catcher, Super-FRS Experiement Collaboration Meeting, Walldorf, Germany, May 2 — 4, 2018
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Approved Beam-Times

proved Beamtimes for 2018/19

208ph projectile fragments
(S464 S. Pietri)

124Xe projectile fragments
(5474 W. PlaR)

Multi-Nucleon Transfer
238 beam + 164Dy target
(S475 T. Dickel)

Deta-delayed Neutron Emmission
238 fission fragments
(5472 1. Mardor)

N ——

A: 8474 + S464 A-: 8472 + S475

. Dickel, Isomer Studies with the FRS lon Catcher, Super-FRS Experiement Collaboration Mesting, Walldorf, Germany, May 24, 2018

e Our interests are numerous but in order of priority: 152Sm, 160Yh and 80z
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Summary and Prospects
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T4 and O, Symmetries in *2Sm — Summary

e We believe having demonstrated signs of simultaneous presence of
tetrahedral and octahedral symmetries in existing experimental data
of other authors — following the strict group representation criteria
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T4 and O, Symmetries in *2Sm — Summary

e We believe having demonstrated signs of simultaneous presence of
tetrahedral and octahedral symmetries in existing experimental data
of other authors — following the strict group representation criteria

e Octahedral symmetry hypothesis leads to two parabolic branches

Aig: 0T, 4% 67,87, 07,107, ..., I"=/T < rms. ~1.6keV, 5 states
Forming a common parabola
Ay 37,67,7,97,10,117,..., I" =17 < r.m.s. =~ 7.5keV, 6 states
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T4 and O, Symmetries in *2Sm — Summary

e We believe having demonstrated signs of simultaneous presence of
tetrahedral and octahedral symmetries in existing experimental data
of other authors — following the strict group representation criteria

e Octahedral symmetry hypothesis leads to two parabolic branches

Aig: 0T, 4% 67,87, 07,107, ..., I"=/T < rms. ~1.6keV, 5 states

Forming a common parabola

Ay 37,67,7,97,10,117,..., I" =17 < r.m.s. =~ 7.5keV, 6 states

e Negative parity branch lies entirely below positive parity branch

Jerzy DUDEK, UdS and UMCS Evidence for Octahedral & Tetrahedral Symmetries



T4 and O, Symmetries in *2Sm — Summary

e We believe having demonstrated signs of simultaneous presence of
tetrahedral and octahedral symmetries in existing experimental data
of other authors — following the strict group representation criteria

e Octahedral symmetry hypothesis leads to two parabolic branches

Aig: 0T, 4% 67,87, 07,107, ..., I"=/T < rms. ~1.6keV, 5 states

Forming a common parabola

Ay 37,67,7,97,10,117,..., I" =17 < r.m.s. =~ 7.5keV, 6 states

e Negative parity branch lies entirely below positive parity branch

e Tetrahedral symmetry hypothesis leads to one parabolic branch

Ay: 07,37,4%, (67,67),77,8",(9",97), (107,107), 117, 2 x 12+, 127, ...
N — N e N ————
doublet doublet doublet triplet

Forming a common parabola with r.m.s.=80 keV over 11 states
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T4 and O, Symmetries in *2Sm — Summary

e Estimated probability of obtaining discussed correlations at the
discovered precision level and within the discussed excitation energy
range out of random numbers is:

PVO‘2=80keV ~ 1-1 . 10—14

Ty — incidental : P},7, 2 0

KL e’ = de
___ _~de

Experimental Energy (MeV)
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T4 and Oy, Symmetries — Summary

e The only way towards identification of tetrahedral and octahedral
symmetries in subatomic physics is via group theory and irreducible
representation analysis: We presented and illustrated this approach
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T4 and Oy, Symmetries — Summary

e The only way towards identification of tetrahedral and octahedral
symmetries in subatomic physics is via group theory and irreducible
representation analysis: We presented and illustrated this approach

e Residual collectivities a la Bohr Model: Ally and

— Ally: Some electromagnetic transitions, even weak, can be present
= The degeneracies may become more and more in-exact!
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T4 and Oy, Symmetries — Summary

e The only way towards identification of tetrahedral and octahedral
symmetries in subatomic physics is via group theory and irreducible
representation analysis: We presented and illustrated this approach

e Residual collectivities a la Bohr Model: Ally and

— Ally: Some electromagnetic transitions, even weak, can be present
= The degeneracies may become more and more in-exact!

e Isomeric Band Hypothesis: To us, a very attractive manifestation
of symmetries which requires a close collaboration with experiment
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T4 and Oy, Symmetries — Summary

e The only way towards identification of tetrahedral and octahedral
symmetries in subatomic physics is via group theory and irreducible
representation analysis: We presented and illustrated this approach

e Residual collectivities a la Bohr Model: Ally and

— Ally: Some electromagnetic transitions, even weak, can be present
= The degeneracies may become more and more in-exact!

e Isomeric Band Hypothesis: To us, a very attractive manifestation
of symmetries which requires a close collaboration with experiment

e The Multiple Reflection Time of Flight (MR-TOF) techniques,
further developed, are realistic and applicable almost immediately
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T4 and Oy, Symmetries — Summary

e The only way towards identification of tetrahedral and octahedral
symmetries in subatomic physics is via group theory and irreducible
representation analysis: We presented and illustrated this approach

e Residual collectivities a la Bohr Model: Ally and

— Ally: Some electromagnetic transitions, even weak, can be present
= The degeneracies may become more and more in-exact!

e Isomeric Band Hypothesis: To us, a very attractive manifestation
of symmetries which requires a close collaboration with experiment

e The Multiple Reflection Time of Flight (MR-TOF) techniques,
further developed, are realistic and applicable almost immediately

e By populating excited (np-nh) tetrahedral symmetry states we
open the way towards the unique symmetry identification conditions!
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New Informal Nuclear Structure Physics Group

Presentation of the members:

1. A Baran, 2. N Benhamouda, 3. D Curien, 4. | Dedes,
5. A Gaamouci, 6. H-Y Meng, 7. D Rouvel, 8. K Starosta,
9. H-L Wang, 10. M Warda, 11. J Yang
and 12. J Dudek — spokesperson
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Theoretical Determination of Stability of Exotic Nuclei
with Estimates of Modelling Uncertainties
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e Properties of K-isomers.
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New Informal Nuclear Structure Physics Group

Presentation of the members:

1. A Baran, 2. N Benhamouda, 3. D Curien, 4. | Dedes,
5. A Gaamouci, 6. H-Y Meng, 7. D Rouvel, 8. K Starosta,
9. H-L Wang, 10. M Warda, 11. J Yang
and 12. J Dudek — spokesperson

Presentation of the main research lines:
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